950 resultados para Aquatic weed
Resumo:
Aquatic Toxicology 63 (2003) 307-318
Resumo:
OBJECTIVE To evaluate the resistance of Aedes aegypti to temephos Fersol 1G (temephos 1% w/w) associated with the adaptive disadvantage of insect populations in the absence of selection pressure. METHODS A diagnostic dose of 0.28 mg a.i./L and doses between 0.28 mg a.i./L and 1.40 mg a.i./L were used. Vector populations collected between 2007 and 2008 in the city of Campina Grande, state of Paraíba, were evaluated. To evaluate competition in the absence of selection pressure, insect populations with initial frequencies of 20.0%, 40.0%, 60.0%, and 80.0% resistant individuals were produced and subjected to the diagnostic dose for two months. Evaluation of the development of aquatic and adult stages allowed comparison of the life cycles in susceptible and resistant populations and construction of fertility life tables. RESULTS No mortality was observed in Ae. aegypti populations subjected to the diagnostic dose of 0.28 mg a.i./L. The decreased mortality observed in populations containing 20.0%, 40.0%, 60.0%, and 80.0% resistant insects indicates that temephos resistance is unstable in the absence of selection pressure. A comparison of the life cycles indicated differences in the duration and viability of the larval phase, but no differences were observed in embryo development, sex ratio, adult longevity, and number of eggs per female. CONCLUSIONS The fertility life table results indicated that some populations had reproductive disadvantages compared with the susceptible population in the absence of selection pressure, indicating the presence of a fitness cost in populations resistant to temephos.
Resumo:
FEMS Microbiology Ecology, Vol. 57, nº 1
Resumo:
Neogene marine mammals are still incompletely known in Portugal. However, a general overview of the geographic and stratigraphic distribution of marine mammal localities in the Miocene of Portugal is already possible. An attempt of correlation between the trends shown by these distributions and the horizontal and vertical environmental shifts is presented. In general, sirenians occur in deposits representing shallow, warm, low energy aquatic environments; while cetaceans are more frequent in more open, deep and temperate marine environments.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
Among organic pollutants existing in coastal areas, polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their ubiquity and carcinogenic potential. The aim of this study was to evaluate the seasonal patterns of PAHs in the digestive gland and arm of the common octopus (Octopus vulgaris) from the Northwest Atlantic Portuguese coast. In the different seasons, 18 PAHs were determined and the detoxification capacity of the species was evaluated. Ethoxyresorufin O-deethylase (EROD) and ethoxycoumarin O-deethylase (ECOD) activities were measured to assess phase I biotransformation capacity. Individual PAH ratios were used for major source (pyrolytic/petrogenic) analysis. Risks for human consumption were determined by the total toxicity equivalence approach. Generally, low levels of PAHs were detected in the digestive gland and in the arm of octopus, with a predominance of low molecular over high molecular weight compounds. PAHs exhibited seasonality in the concentrations detected and in their main emission sources. In the digestive gland, the highest total PAH levels were observed in autumn possibly related to fat availability in the ecosystem and food intake. The lack of PAH elimination observed in the digestive gland after captivity could be possibly associated to a low biotransformation capacity, consistent with the negligible/undetected levels of EROD and ECOD activity in the different seasons. The emission sources of PAHs found in the digestive gland varied from a petrogenic profile observed in winter to a pyrolytic pattern in spring. In the arm, the highest PAH contents were observed in June; nevertheless, levels were always below the regulatory limits established for food consumption. The carcinogenic potential calculated for all the sampling periods in the arm were markedly lower than the ones found in various aquatic species from different marine environments. The results presented in this study give relevant baseline data for environmental monitoring of organic pollution in coastal areas.
Joint effects of salinity and the antidepressant sertraline on the estuarine decapod Carcinus maenas
Resumo:
Concurrent exposure of estuarine organisms to man-made and natural stressors has become a common occurrence. Numerous interactions of multiple stressors causing synergistic or antagonistic effects have been described. However, limited information is available on combined effects of emerging pharmaceuticals and natural stressors. This study investigated the joint effects of the antidepressant sertraline and salinity on Carcinus maenas. To improve knowledge about interactive effects and potential vulnerability,experiments were performed with organisms from two estuaries with differing histories of exposure to environmental contamination. Biomarkers related to mode of action of sertraline were employed to assess effects of environmentally realistic concentrations of sertraline at two salinity levels. Synergism and antagonism were identified for biomarkers of cholinergic neurotransmission, energy production,anti-oxidant defences and oxidative damage. Different interactions were found for the two study sites highlighting the need to account for differences in tolerance of local ecological receptors in risk evaluations.
Resumo:
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) widely used in the treatment of major depression. It has been detected in surface and wastewaters, being able to negatively affect aquatic organisms. Most of the ecotoxicity studies focused only in pharmaceuticals, though excipients can also pose a risk to non-target organisms. In this work the ecotoxicity of five medicines (three generic formulations and two brand labels) containing the same active substance (fluoxetine hydrochloride) was tested on the alga Chlorella vulgaris, in order to evaluate if excipients can influence their ecotoxicity. Effective concentrations that cause 50% of inhibition (EC50) ranging from 0.25 to 15 mg L−1 were obtained in the growth inhibition test performed for the different medicines. The corresponding values for fluoxetine concentration are 10 times lower. Higher EC50 values had been published for the same alga considering only the toxicity of fluoxetine. Therefore, this increase in toxicity may be attributed to the presence of excipients. Thus more studies on ecotoxicological effects of excipients are required in order to assess the environmental risk they may pose to aquatic organisms.
Resumo:
The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwateralga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells wereexposed to three nominal concentrations of each metal: low (closed to 72 h-EC10values), intermediate(closed to 72 h-EC50values) and high (upper than 72 h-EC90values). The exposure to low metal concen-trations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations anincrease of cell volume was observed; this effect was particularly notorious for Cd and less pronouncedfor Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations ofmetals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an oppositeeffect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases inP. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus;and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrationsresulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after thesecond nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). Thedifferent impact of metals on algal cell volume and cell-cycle progression, suggests that different toxic-ity mechanisms underlie the action of different metals studied. The simultaneous nucleus staining andcell image analysis, used in the present work, can be a useful tool in the analysis of the toxicity of thepollutants, in P. subcapitata, and help in the elucidation of their different modes of action.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, perfil de Engenharia Ecológica
Resumo:
Accumulation of microcystin-LR (MC-LR) in edible aquatic organisms, particularly in bivalves, is widely documented. In this study, the effects of food storage and processing conditions on the free MC-LR concentration in clams (Corbicula fluminea) fed MC-LR-producing Microcystisaeruginosa (1 × 105 cell/mL) for four days, and the bioaccessibility of MC-LR after in vitro proteolytic digestion were investigated. The concentration of free MC-LR in clams decreased sequentially over the time with unrefrigerated and refrigerated storage and increased with freezing storage. Overall, cooking for short periods of time resulted in a significantly higher concentration (P < 0.05) of free MC-LR in clams, specifically microwave (MW) radiation treatment for 0.5 (57.5%) and 1 min (59%) and boiling treatment for 5 (163.4%) and 15 min (213.4%). The bioaccessibility of MC-LR after proteolytic digestion was reduced to 83%, potentially because of MC-LR degradation by pancreatic enzymes. Our results suggest that risk assessment based on direct comparison between MC-LR concentrations determined in raw food products and the tolerable daily intake (TDI) value set for the MC-LR might not be representative of true human exposure.
Resumo:
The cyanobacteria are known to be a rich source of metabolites with a variety of biological activities in different biological systems. In the present work, the bioactivity of aqueous and organic (methanolic and hexane) crude extracts of cyanobacteria isolated from estuarine ecosystems was studied using different bioassays. The assessment of DNA damage on the SOS gene repair region of mutant PQ37 strain of Escherichia coli was performed. Antiviral activity was evaluated against influenza virus, HRV-2, CVB3 and HSV-1 viruses using crystal violet dye uptake on HeLa, MDCK and GMK cell lines. Cytotoxicity evaluation was performed with L929 fibroblasts by MTT assay. Of a total of 18 cyanobacterial isolates studied, only the crude methanolic extract of LEGE 06078 proved to be genotoxic (IF > 1.5) in a dose-dependent manner and other four were putative candidates to induce DNA damage. Furthermore, the crude aqueous extract of LEGE 07085 showed anti- herpes type 1 activity (IC50 = 174.10 μg dry extract mL−1) while not presenting any cytotoxic activity against GMK cell lines. Of the 54 cyanobacterial extracts tested, only the crude methanolic and hexane ones showed impair on metabolic activity of L929 fibroblasts after long exposure (48–72 h). The inhibition of HSV-1 and the strong cytotoxicity against L929 cells observed emphasizes the importance of evaluating the impact of those estuarine cyanobacteria on aquatic ecosystem and on human health. The data also point out their potential application in HSV-1 treatment and pharmacological interest.
Resumo:
Over the last 30 years, a number of Vibrio species found in the aquatic environment have been indicated as cause of disease in human beings. Vibrio vulnificus is an emergent pathogen, an invasive and lethal marine bacterium related to wound infection and held accountable for gastroenteritis and primary septicemia. It occurs quite frequently in marine organisms, mainly in mollusks. This study aimed at isolating and identifying strains of V. vulnificus based upon the analysis of twenty samples of seabob shrimp, Xiphopenaeus kroyeri (Heller), purchased at the Mucuripe fish market (Fortaleza, Brazil). TCBS agar was used to isolate suspect strains. Seven of twenty-nine strains isolated from six different samples were confirmed as such by means of biochemical evidence and thus submitted to biological assays to determine their virulence. The susceptibility of the V. vulnificus strains to a number of antibiotics was tested. None of the V. vulnificus strains showed signs of virulence during a 24-hour observation period, possibly due to the shedding of the capsules by the cells. As to the results of the antimicrobial susceptibility tests, the seven above-mentioned V. vulnificus strains were found to be sensitive to nitrofurantoin (NT), ciprofloxacin (CIP), gentamicin (GN) and chloramphenicol (CO) and resistant to clindamycin (CI), penicillin (PN) and ampicillin (AP).
Resumo:
Microalgae are promising microorganisms for the production of food and fine chemicals. Several species of microalgae are used in aquaculture with the purpose of transfer bioactive compounds up to the aquatic food chain. The main objective of this project was to develop a stress–inducement strategy in order to enhance the biochemical productivity of Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp. for aquaculture purposes having in account their growth and organizational differences. In this regard, two experiments were design: the first one consisted on the alteration of overall nutrient availabilities in growth medium; and the second one comprised changes in nitrogen and sulfur concentrations maintaining the concentrations of the other nutrients present in a commercial growth medium (Nutribloom plus), which is frequently used in aquaculture. Microalgae dried biomass was characterized biochemically and elemental analysis was also performed for all samples. In first experimental design: linear trends between nutrient availability in growth media and microalgae protein content were obtained; optimum productivities of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) were attained for both R. marina and N. gaditana in growth media enriched with 1000 L L-1 of nutrient solution whereas for Isochrysis sp. the double of Nutribloom plus was needed; the decrease of glucans and total monosaccharides with nutrient availability for R. marina and Isochrysis sp. showed the occurrence of a possible depletion of carbohydrates towards lipids and proteins biosynthesis. Second experimental desing: N. gaditana exhibited the highest variation in their biochemical composition against the applied perturbation; variations observed for microalgae in their biochemical composition were reflected in their elemental stoichiometry; in N. gaditana the highest nitrogen concentrations lead to overall maximum productivities of the biochemical parameters. The results of the present work show two stress-inducement strategies for microalgae that may constitute a base for further investigations on their biochemical enhancement.
Resumo:
Injuries caused by venomous and poisonous aquatic animals may provoke important morbidity in humans. The phylum Echinoderma include more than 6000 species of starfish, sea urchins, sand dollars, and sea cucumbers some of which have been found responsible for injuries to humans. Initial injuries by sea urchins are associated with trauma and envenomation, but later effects can be observed. Sea urchin granuloma is a chronic granulomatous skin disease caused by frequent and successive penetration of sea urchin spines which have not been removed from wounds. The authors report a typical case of sea urchin granuloma in a fisherman and its therapeutic implications.