818 resultados para Approximate Computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With recent expansions in technology, mobile computing continues to play a vital role in all aspects of our lives. Digital technology tools such as Web browsing, media tracking, social media, and emailing have made mobile technology more than just a means of communication but has widespread use in business and social networks. Developments in Technologies for Human-Centric Mobile Computing and Applications is a comprehensive collection of knowledge and practice in the development of technologies in human –centric mobile technology. This book focuses on the developmental aspects of mobile technology; bringing together researchers, educators, and practitioners to encourage readers to think outside of the box.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel computing systems are increasingly being composed of large numbers of heterogeneous components, each with potentially different goals or local perspectives, and connected in networks which change over time. Management of such systems quickly becomes infeasible for humans. As such, future computing systems should be able to achieve advanced levels of autonomous behaviour. In this context, the system's ability to be self-aware and be able to self-express becomes important. This paper surveys definitions and current understanding of self-awareness and self-expression in biology and cognitive science. Subsequently, previous efforts to apply these concepts to computing systems are described. This has enabled the development of novel working definitions for self-awareness and self-expression within the context of computing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fractional Fourier transform (FrFT) is used for the solution of the diffraction integral in optics. A scanning approach is proposed for finding the optimal FrFT order. In this way, the process of diffraction computing is speeded up. The basic algorithm and the intermediate results at each stage are demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of efficient computing of the affine vector operations (addition of two vectors and multiplication of a vector by a scalar over GF (q)), and also the weight of a given vector, is important for many problems in coding theory, cryptography, VLSI technology etc. In this paper we propose a new way of representing vectors over GF (3) and GF (4) and we describe an efficient performance of these affine operations. Computing weights of binary vectors is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GraphChi is the first reported disk-based graph engine that can handle billion-scale graphs on a single PC efficiently. GraphChi is able to execute several advanced data mining, graph mining and machine learning algorithms on very large graphs. With the novel technique of parallel sliding windows (PSW) to load subgraph from disk to memory for vertices and edges updating, it can achieve data processing performance close to and even better than those of mainstream distributed graph engines. GraphChi mentioned that its memory is not effectively utilized with large dataset, which leads to suboptimal computation performances. In this paper we are motivated by the concepts of 'pin ' from TurboGraph and 'ghost' from GraphLab to propose a new memory utilization mode for GraphChi, which is called Part-in-memory mode, to improve the GraphChi algorithm performance. The main idea is to pin a fixed part of data inside the memory during the whole computing process. Part-in-memory mode is successfully implemented with only about 40 additional lines of code to the original GraphChi engine. Extensive experiments are performed with large real datasets (including Twitter graph with 1.4 billion edges). The preliminary results show that Part-in-memory mode memory management approach effectively reduces the GraphChi running time by up to 60% in PageRank algorithm. Interestingly it is found that a larger portion of data pinned in memory does not always lead to better performance in the case that the whole dataset cannot be fitted in memory. There exists an optimal portion of data which should be kept in the memory to achieve the best computational performance.