943 resultados para Antioxidative enzyme
Resumo:
The enzymes that are involved in the elongation of fatty acids differ in terms of the substrates on which they act. To date, the enzymes specifically involved in the biosynthesis of polyunsaturated fatty acids have not yet been identified. In an attempt to identify a gene(s) encoding an enzyme(s) specific for the elongation of γ-linolenic acid (GLA) (18:3n-6), a cDNA expression library was made from the fungus Mortierella alpina. The cDNA library constructed in a yeast expression vector was screened by measuring the expressed elongase activity [conversion of GLA to dihomo-GLA (20:3n-6)] from an individual yeast clone. In this report, we demonstrate the isolation of a cDNA (GLELO) whose encoded protein (GLELOp) was involved in the conversion of GLA to dihomo-GLA in an efficient manner (60% conversion). This cDNA contains a 957-nucleotide ORF that encodes a protein of 318 amino acids. Substrate specificity analysis revealed that this fungal enzyme acted also on stearidonic acid (18:4n-3). This report identifies and characterizes an elongase subunit that acts specifically on the two Δ6-desaturation products, 18:3n-6 and 18:4n-3. When this GLELO cDNA was coexpressed with M. alpina Δ5-desaturase cDNA in yeast, it resulted in the conversion of GLA to arachidonic acid (20:4n-6) as well as the conversion of stearidonic acid to eicosopentaenoic acid (20:5n-3). Thus, this GLELO gene may play an critical role in the bio-production of both n-6 and n-3 polyunsaturated fatty acids.
Resumo:
Atrial natriuretic peptide (ANP) is a cardiac hormone essential for the regulation of blood pressure. In cardiac myocytes, ANP is synthesized as a precursor, pro-ANP, that is converted to biologically active ANP by an unknown membrane-associated protease. Recently, we cloned a transmembrane serine protease, corin, that is highly expressed in the heart. In this study, we examine effects of corin on pro-ANP processing. Our results show that recombinant human corin converts pro-ANP to ANP and that the cleavage in pro-ANP by corin is highly sequence specific. Our findings suggest that corin is the long-sought pro-ANP-converting enzyme and that the corin-mediated pro-ANP activation may play a role in regulating blood pressure.
Resumo:
The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme.
Resumo:
Two arginine residues, Arg-181 and Arg-268, are conserved throughout the known family of FMN-containing enzymes that catalyze the oxidation of α-hydroxyacids. In the lactate oxidase from Aerococcus viridans, these residues have been changed to lysine in two single mutations and in a double mutant form. In addition, Arg-181 has been replaced by methionine to determine the effect of removing the positive charge on the residue. The effects of these replacements on the kinetic and thermodynamic properties are reported. With all mutant forms, there are only small effects on the reactivity of the reduced flavin with oxygen. On the other hand, the efficiency of reduction of the oxidized flavin by l-lactate is greatly reduced, particularly with the R268K mutant forms. The results demonstrate the importance of the two arginine residues in the binding of substrate and its interaction with the flavin, and are consistent with a previous hypothesis that they also play a role of charge neutralization in the transition state of substrate dehydrogenation. The replacement of Arg-268 by lysine also results in a slow conversion of the 8-CH3- substituent of FMN to yield 8-formyl-FMN, still tightly bound to the enzyme, and with significantly different physical and chemical properties from those of the FMN-enzyme.
Resumo:
The pancreatic acinar cell produces powerful digestive enzymes packaged in zymogen granules in the apical pole. Ca2+ signals elicited by acetylcholine or cholecystokinin (CCK) initiate enzyme secretion by exocytosis through the apical membrane. Intracellular enzyme activation is normally kept to a minimum, but in the often-fatal human disease acute pancreatitis, autodigestion occurs. How the enzymes become inappropriately activated is unknown. We monitored the cytosolic Ca2+ concentration ([Ca2+]i), intracellular trypsin activation, and its localization in isolated living cells with specific fluorescent probes and studied intracellular vacuole formation by electron microscopy as well as quantitative image analysis (light microscopy). A physiological CCK level (10 pM) eliciting regular Ca2+ spiking did not evoke intracellular trypsin activation or vacuole formation. However, stimulation with 10 nM CCK, evoking a sustained rise in [Ca2+]i, induced pronounced trypsin activation and extensive vacuole formation, both localized in the apical pole. Both processes were abolished by preventing abnormal [Ca2+]i elevation, either by preincubation with the specific Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N-N′,N′-tetraacetic acid (BAPTA) or by removal of external Ca2+. CCK hyperstimulation evokes intracellular trypsin activation and vacuole formation in the apical granular pole. Both of these processes are mediated by an abnormal sustained rise in [Ca2+]i.
Resumo:
Enzymes participating in different metabolic pathways often have similar catalytic mechanisms and structures, suggesting their evolution from a common ancestral precursor enzyme. We sought to create a precursor-like enzyme for N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) isomerase (HisA; EC 5.3.1.16) and phosphoribosylanthranilate (PRA) isomerase (TrpF; EC 5.3.1.24), which catalyze similar reactions in the biosynthesis of the amino acids histidine and tryptophan and have a similar (βα)8-barrel structure. Using random mutagenesis and selection, we generated several HisA variants that catalyze the TrpF reaction both in vivo and in vitro, and one of these variants retained significant HisA activity. A more detailed analysis revealed that a single amino acid exchange could establish TrpF activity on the HisA scaffold. These findings suggest that HisA and TrpF may have evolved from an ancestral enzyme of broader substrate specificity and underscore that (βα)8-barrel enzymes are very suitable for the design of new catalytic activities.
Resumo:
Hybrid quantum mechanics/molecular mechanics calculations using Austin Model 1 system-specific parameters were performed to study the SN2 displacement reaction of chloride from 1,2-dichloroethane (DCE) by nucleophilic attack of the carboxylate of acetate in the gas phase and by Asp-124 in the active site of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. The activation barrier for nucleophilic attack of acetate on DCE depends greatly on the reactants having a geometry resembling that in the enzyme or an optimized gas-phase structure. It was found in the gas-phase calculations that the activation barrier is 9 kcal/mol lower when dihedral constraints are used to restrict the carboxylate nucleophile geometry to that in the enzyme relative to the geometries for the reactants without dihedral constraints. The calculated quantum mechanics/molecular mechanics activation barriers for the enzymatic reaction are 16.2 and 19.4 kcal/mol when the geometry of the reactants is in a near attack conformer from molecular dynamics and in a conformer similar to the crystal structure (DCE is gauche), respectively. This haloalkane dehalogenase lowers the activation barrier for dehalogenation of DCE by 2–4 kcal/mol relative to the single point energies of the enzyme's quantum mechanics atoms in the gas phase. SN2 displacements of this sort in water are infinitely slower than in the gas phase. The modest lowering of the activation barrier by the enzyme relative to the reaction in the gas phase is consistent with mutation experiments.
Resumo:
Allele frequency variation at the phosphoglucose isomerase (PGI) locus in Californian populations of the beetle Chrysomela aeneicollis suggests that PGI may be undergoing natural selection. We quantified (i) apparent Michaelis-Menten constant (Km) of fructose 6-phosphate at different temperatures and (ii) thermal stability for three common PGI genotypes (1–1, 1–4, and 4–4). We also measured air temperature (Ta) and beetle body temperature (Tb) in three montane drainages in the Sierra Nevada, California. Finally, we measured 70-kDa heat shock protein (Hsp70) expression in field-collected and laboratory-acclimated beetles. We found that PGI allele 1 predominated in the northernmost drainage, Rock Creek (RC), which was also significantly cooler than the southernmost drainage, Big Pine Creek (BPC), where PGI allele 4 predominated. Allele frequencies and air temperatures were intermediate in the middle drainage, Bishop Creek (BC). Differences among genotypes in Km (1–1 > 1–4 > 4–4) and thermal stability (4–4 > 1–4 > 1–1) followed a pattern consistent with temperature adaptation. In nature, Tb was closely related to Ta. Hsp70 expression in adult beetles decreased with elevation and differed among drainages (BPC > BC > RC). After laboratory acclimation (8 days, 20°C day, 4°C night) and heat shock (4 h, 28–36°C), Hsp70 expression was greater for RC than BPC beetles. In RC, field-collected beetles homozygous for PGI 1–1 had higher Hsp70 levels than heterozygotes or a 4–4 homozygote. These results reveal functional and physiological differences among PGI genotypes, which suggest that montane populations of this beetle are locally adapted to temperature.
Resumo:
Sulfite oxidase catalyzes the terminal reaction in the degradation of sulfur amino acids. Genetic deficiency of sulfite oxidase results in neurological abnormalities and often leads to death at an early age. The mutation in the sulfite oxidase gene responsible for sulfite oxidase deficiency in a 5-year-old girl was identified by sequence analysis of cDNA obtained from fibroblast mRNA to be a guanine to adenine transition at nucleotide 479 resulting in the amino acid substitution of Arg-160 to Gln. Recombinant protein containing the R160Q mutation was expressed in Escherichia coli, purified, and characterized. The mutant protein contained its full complement of molybdenum and heme, but exhibited 2% of native activity under standard assay conditions. Absorption spectroscopy of the isolated molybdenum domains of native sulfite oxidase and of the R160Q mutant showed significant differences in the 480- and 350-nm absorption bands, suggestive of altered geometry at the molybdenum center. Kinetic analysis of the R160Q protein showed an increase in Km for sulfite combined with a decrease in kcat resulting in a decrease of nearly 1,000-fold in the apparent second-order rate constant kcat/Km. Kinetic parameters for the in vitro generated R160K mutant were found to be intermediate in value between those of the native protein and the R160Q mutant. Native sulfite oxidase was rapidly inactivated by phenylglyoxal, yielding a modified protein with kinetic parameters mimicking those of the R160Q mutant. It is proposed that Arg-160 attracts the anionic substrate sulfite to the binding site near the molybdenum.
Resumo:
The specificity of the yeast proprotein-processing Kex2 protease was examined in vivo by using a sensitive, quantitative assay. A truncated prepro-α-factor gene encoding an α-factor precursor with a single α-factor repeat was constructed with restriction sites for cassette mutagenesis flanking the single Kex2 cleavage site (-SLDKR↓EAEA-). All of the 19 substitutions for the Lys (P2) residue in the cleavage site were made. The wild-type and mutant precursors were expressed in a yeast strain lacking the chromosomal genes encoding Kex2 and prepro-α-factor. Cleavage of the 20 sites by Kex2, expressed at the wild-type level, was assessed by using a quantitative-mating assay with an effective range greater than six orders of magnitude. All substitutions for Lys at P2 decreased mating, from 2-fold for Arg to >106-fold for Trp. Eviction of the Kex2-encoding plasmid indicated that cleavage of mutant sites by other cellular proteases was not a complicating factor. Mating efficiencies of strains expressing the mutant precursors correlated well with the specificity (kcat/KM) of purified Kex2 for comparable model peptide substrates, validating the in vivo approach as a quantitative method. The results support the conclusion that KM, which is heavily influenced by the nature of the P2 residue, is a major determinant of cleavage efficiency in vivo. P2 preference followed the rank order: Lys > Arg > Thr > Pro > Glu > Ile > Ser > Ala > Asn > Val > Cys > AsP > Gln > Gly > His > Met > Leu > Tyr > Phe > Trp.
Resumo:
Muconate lactonizing enzyme (MLE), a component of the β-ketoadipate pathway of Pseudomonas putida, is a member of a family of related enzymes (the “enolase superfamily”) that catalyze the abstraction of the α-proton of a carboxylic acid in the context of different overall reactions. New untwinned crystal forms of MLE were obtained, one of which diffracts to better than 2.0-Å resolution. The packing of the octameric enzyme in this crystal form is unusual, because the asymmetric unit contains three subunits. The structure of MLE presented here contains no bound metal ion, but is very similar to a recently determined Mn2+-bound structure. Thus, absence of the metal ion does not perturb the structure of the active site. The structures of enolase, mandelate racemase, and MLE were superimposed. A comparison of metal ligands suggests that enolase may retain some characteristics of the ancestor of this enzyme family. Comparison of other residues involved in catalysis indicates two unusual patterns of conservation: (i) that the position of catalytic atoms remains constant, although the residues that contain them are located at different points in the protein fold; and (ii) that the positions of catalytic residues in the protein scaffold are conserved, whereas their identities and roles in catalysis vary.
Resumo:
Thioredoxin 1 is a major thiol-disulfide oxidoreductase in the cytoplasm of Escherichia coli. One of its functions is presumed to be the reduction of the disulfide bond in the active site of the essential enzyme ribonucleotide reductase. Thioredoxin 1 is kept in a reduced state by thioredoxin reductase. In a thioredoxin reductase null mutant however, most of thioredoxin 1 is in the oxidized form; recent reports have suggested that this oxidized form might promote disulfide bond formation in vivo. In the Escherichia coli periplasm, the protein disulfide isomerase DsbC is maintained in the reduced and active state by the membrane protein DsbD. In a dsbD null mutant, DsbC accumulates in the oxidized form. This oxidized form is then able to promote disulfide bond formation. In both these cases, the inversion of the function of these thiol oxidoreductases appears to be due to an altered redox balance of the environment in which they find themselves. Here, we show that thioredoxin 1 attached to the alkaline phosphatase signal sequence can be exported into the E. coli periplasm. In this new environment for thioredoxin 1, we show that thioredoxin 1 can promote disulfide bond formation and, therefore, partially complement a dsbA strain defective for disulfide bond formation. Thus, we provide evidence that by changing the location of thioredoxin 1 from cytoplasm to periplasm, we change its function from a reductant to an oxidant. We conclude that the in vivo redox function of thioredoxin 1 depends on the redox environment in which it is localized.