961 resultados para Antigen-Antibody Complex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17-38, P = 8.08E - 08) phenotypic variance associated with all types of PD, 15% (95% CI -0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17-44, P = 1.34E - 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered. © Published by Oxford University Press 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis. © 2011 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)18-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K 528R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10-8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10-6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) is a common, highly heritable arthropathy, the pathogenesis of which is poorly understood. The mechanism by which the main gene for the disease, HLA-B27, leads to AS is unknown. Genetic and genomic studies have demonstrated involvement of the interleukin-23 (IL-23) signaling pathway in AS, a finding which has stimulated much new research into the disease and has led to therapeutic trials. Several other genes and genetic regions, including further major histocompatibility complex (MHC) and non-MHC loci, have been shown to be involved in the disease, but it is not clear yet how they actually induce the condition. These findings have shown that there is a strong genetic overlap between AS and Crohn's disease in particular, although there are also major differences in the genes involved in the two conditions, presumably explaining their different presentations. Genomic and proteomic studies are in an early phase but have potential both as diagnostic/prognostic tools and as a further hypothesis-free tool to investigate AS pathogenesis. Given the slow progress in studying the mechanism of association of HLA-B27 with AS, these may prove to be more fruitful approaches to investigating the pathogenesis of the disease. © 2009 John Wiley & Sons A/S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify new susceptibility loci for psoriasis, we undertOk a genome-wide asociation study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified asociations at eight previously unreported genomic loci. Seven loci harbored genes with recognized iMune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These asociations were replicated in 9,079 European samples (six loci with a combined P < 5-10 -8 and two loci with a combined P < 5-10-7). We also report compeLing evidence for an interaction betwEn the HLA-C and ERAP1 loci (combined P = 6.95-10-6). ERAP1 plays an important role in MHC claS I peptide proceSing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk aLele. Our findings implicate pathways that integrate epidermal barrier dysfunction with iNate and adaptive iMune dysregulation in psoriasis pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The International Genetics of Ankylosing Spondylitis (IGAS) meeting was held in Houston, Texas, July 25, 2009. Sixteen investigators from Asia, Australia, Europe, and North and South America presented the status of their respective cohorts of patients with ankylosing spondylitis (AS). They also reviewed a proposal to examine their patients by single-nucleotide polymorphism (SNP) genotyping on an Illumina Infinium microarray SNP genotyping chip in a case-control cohort exceeding 12,000 samples. This chip will type 200,000 SNP selected from the most strongly associated variants identified in genome-wide association studies of inflammatory diseases, including inflammatory bowel disease, psoriasis, and ankylosing spondylitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A joint meeting was held in July 2009 in Houston, Texas, of members of the Spondyloarthritis Research and Therapy Network (SPARTAN), founded in 2003 to promote research, education, and treatment of ankylosing spondylitis (AS) and related forms of spondyloarthritis (SpA), and members of International Genetics of AS (IGAS), founded in 2003 to encourage and coordinate studies internationally in the genetics of AS. The general topic was the genetic basis of SpA, with presentations on the future of human genetic studies; microbes, SpA, and innate immunity; susceptibility of AS to the major histocompatibility complex (MHC) and non-MHC; and individual discussions of the genetics of psoriasis and psoriatic arthritis, uveitis, inflammatory bowel disease, and enteropathic arthritis. Summaries of those discussions are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS), the prototypic seronegative arthropathy, is known to be highly heritable, with >90% of the risk of developing the disease determined genetically. As with most common heritable diseases, progress in identifying the genes involved using family-based or candidate gene approaches has been slow. The recent development of the genome-wide association study approach has revolutionized genetic studies of such diseases. Early studies in ankylosing spondylitis have produced two major breakthroughs in the identification of genes contributing roughly one third of the population attributable risk of the disease, and pointing directly to a potential therapy. These exciting findings highlight the potential of future more comprehensive genetic studies of determinants of disease risk and clinical manifestations, and are the biggest advance in our understanding of the causation of the disease since the discovery of the association with HLA-B27.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) has been associated with human leukocyte antigen (HLA)-B27 for over 30 years; however, the mechanism of action has remained elusive. Although many studies have reported associations between AS and other genes in the major histocompatibility complex (MHC) in AS, no conclusive results have emerged. To investigate the contribution of non-B27 MHC genes to AS, a large cohort of AS families and controls were B27 typed and genotyped across the region. Interrogation of the data identified a region of 270kb, lying from 31952649 to 32221738 base pairs from the p-telomere of chromosome 6 and containing 23 genes, which is likely to include genes involved with susceptibility to AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1–3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region4, 5, 6, 7, 8, 9, 10, 11. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheumatoid arthritis is a common complex genetic disease, and, despite a significant genetic element, no gene other than HLA-DRB1 has been clearly demonstrated to be involved in the disease. However, this association accounts for less than half the overall genetic susceptibility. Investigation of other candidate genes, in particular those that reside within the major histocompatibility complex, are hampered by the presence of strong linkage disequilibrium and problems with study design. © 2004 Nature Publishing Group All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sir The association between HLA‐B27 (B27) and ankylosing spondylitis (AS) has been known for 25 yr. Familial aggregation in AS is well established, and first‐degree relatives of AS patients have been shown to be at increased risk of developing the disease. The recurrence risk in siblings of AS patients is quite uncertain, previous studies have variously reported recurrence risks between 6.9 and 27% [1, 2]. Accurate knowledge of the sibling recurrence risk is important both to advise families of the likelihood of disease recurrence, and in genetic statistical analyses utilizing Risch's recurrence risk ratio [3]. This study was designed to determine the risk of developing AS in siblings and to determine the role of the major histocompatibility complex in familial recurrence of AS....

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The costimulatory receptors CD28 and cytotoxic T-lymphocyte antigen (CTLA)-4 and their ligands, CD80 and CD86, are expressed on T lymphocytes; however, their functional roles during T cell-T cell interactions are not well known. The consequences of blocking CTLA-4-CD80/CD86 interactions on purified mouse CD4(+) T cells were studied in the context of the strength of signal (SOS). CD4(+) T cells were activated with phorbol 12-myristate 13-acetate (PMA) and different concentrations of a Ca2+ ionophore, Ionomycin (I), or a sarcoplasmic Ca2+ ATPase inhibitor, Thapsigargin (TG). Increasing concentrations of I or TG increased the amount of interleukin (IL)-2, reflecting the conversion of a low to a high SOS. During activation with PMA and low amounts of I, intracellular concentrations of calcium ([Ca2+](i)) were greatly reduced upon CTLA-4-CD80/CD86 blockade. Further experiments demonstrated that CTLA-4-CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of I or TG (high SOS) but the opposite occurred with PMA and low amounts of I or TG (low SOS). These results were confirmed by surface T-cell receptor (TCR)-CD3 signalling using a low SOS, for example soluble anti-CD3, or a high SOS, for example plate-bound anti-CD3. Also, CTLA-4-CD80/CD86 interactions enhanced the generation of reactive oxygen species (ROS). Studies with catalase revealed that H2O2 was required for IL-2 production and cell cycle progression during activation with a low SOS. However, the high amounts of ROS produced during activation with a high SOS reduced cell cycle progression. Taken together, these results indicate that [Ca2+](i) and ROS play important roles in the modulation of T-cell responses by CTLA-4-CD80/CD86 interactions.