864 resultados para Anti-proliferative activity
Resumo:
Purpose: To investigate the anti-hyperprolactinemic activity of Prunella vulgaris L. extract (PVE) in vivo and in vitro. Methods: Rats were given intraperitoneal (i. p.) metoclopramide (MCP, 150 mg/kg daily) for 10 days to prepare hyperprolactinemia (hyperPRL) model. Bromocriptine was used as positive control drug. High (5.6 g/kg), medium (2.8 g/kg) and low (1.4 g/kg) doses of PVE were administered to hyperPRL rats. The effect of PVE on serum prolactin (PRL), estradiol (E2), progesterone (PGN), follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were investigated in the rats. MMQ cells derived from rat pituitary adenoma cells and GH3 cells from rat pituitary lactotropictumoral cells were used for in vitro experiments. The effect of PVE on PRL secretion were studied in MMQ cells and GH3 cells respectively. Results: Compared with the control group (446.21 ± 32.43 pg/mL), high (219.23 ± 10.62 pg/mL) and medium (245.47 ± 13.52 pg/mL) reduced PRL level of hyperPRL rats significantly (p 0.05). In MMQ cells, treatment with 5 mg/mL PVE or 10 mg/mL PVE) significantly suppressed PRL secretion and synthesis at 24h compared with controls (p < 0.01). Consistent with D2- action, PVE did not affect PRL in rat pituitary lactotropic tumor-derived GH3 cells that lack the D2 receptor expression, compared with controls. Conclusion: PVE showed anti-hyperPRL activity and can potentially be used for the treatment of hyperprolactinemi, but further studies are required to ascertain this
Resumo:
Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2’-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment.
Resumo:
Faced with the continued emergence of antibiotic resistance to all known classes of antibiotics, a paradigm shift in approaches toward antifungal therapeutics is required. Well characterized in a broad spectrum of bacterial and fungal pathogens, biofilms are a key factor in limiting the effectiveness of conventional antibiotics. Therefore, therapeutics such as small molecules that prevent or disrupt biofilm formation would render pathogens susceptible to clearance by existing drugs. This is the first report describing the effect of the Pseudomonas aeruginosa alkylhydroxyquinolone interkingdom signal molecules 2-heptyl-3-hydroxy-4-quinolone and 2-heptyl-4-quinolone on biofilm formation in the important fungal pathogen Aspergillus fumigatus. Decoration of the anthranilate ring on the quinolone framework resulted in significant changes in the capacity of these chemical messages to suppress biofilm formation. Addition of methoxy or methyl groups at the C5–C7 positions led to retention of anti-biofilm activity, in some cases dependent on the alkyl chain length at position C2. In contrast, halogenation at either the C3 or C6 positions led to loss of activity, with one notable exception. Microscopic staining provided key insights into the structural impact of the parent and modified molecules, identifying lead compounds for further development.
Resumo:
The present study was carried out to evaluate the chemical and pharmacological properties of essential oil (EO) of Lavandula stoechas L. subsp. luisieri that is a spontaneous shrub widespread in Alentejo (Portugal). Oxygenated monoterpenes, as 1,8-cineole, lavandulol and necrodane derivatives are the main components of essential oil. It revealed important antioxidant activity with high ability to inhibit the lipid peroxidation and showed an outstanding effect against a wide spectrum of microorganisms, such as Gram-positive and Gram-negative bacteria and pathogenic yeasts. The analgesic effect studied in rats was dose dependent, reaching a maximum of 67 % at 60 min. with the dose of 200 mg/kg and the anti-inflammatory activity with this dose caused an inhibition in carrageenan-induced rat paw oedema (83 %) that is higher than dexamethasone 1 mg/Kg (69 %). Besides, animals exhibited a normal behaviour after EO administration revealing low toxicity. Essential oil of L. luisieri from Alentejo that presents important pharmacological properties and low toxicity is a promised candidate to be used as food supplement or in pharmaceutical applications.
Resumo:
The flavonoids (including anthocyanins) are wine compounds with important anti-oxidant activity, protecting the cells against oxidative processes, preventing cardiovascular and neurodegenerative diseases, cancer, among others (Antoniolli et al. 2015; Castañeda-Ovando et al. 2009; Hosu et al. 2014; Huang et al. 2009; Kong et al. 2003). Anthocyanins in grapes at harvest are determinant to red wine quality and their development in the grape must be characterised in order to determine the most suitable date for the harvest. Thus the aim of this research is the evaluation of anthocyanins composition in two red wine grape varieties from véraison continuing through ripening. Anthocyanins were quantified by high resolution liquid chromatography (HPLC-DAD). Additionally, the total phenols content were quantified by UV-Vis Spectrometry. The anthocyanins’ profile evolution may be dependent on the variety and ripening phase. During ripening grape samples have shown an increase of coumaryl derivatives. This information may lead us to understand the anthocyanins biosynthesis pathway in different grape varieties. The development of anthocyanins from the véraison seems to follow a pattern that coincides with the increasing accumulation of soluble sugars.
Resumo:
The significance of carbohydrate-protein interactions in many biological phenomena is now widely acknowledged and carbohydrate based pharmaceuticals are under intensive development. The interactions between monomeric carbohydrate ligands and their receptors are usually of low affinity. To overcome this limitation natural carbohydrate ligands are often organized as multivalent structures. Therefore, artificial carbohydrate pharmaceuticals should be constructed on the same concept, as multivalent carbohydrates or glycoclusters. Infections of specific host tissues by bacteria, viruses, and fungi are among the unfavorable disease processes for which suitably designed carbohydrate inhibitors represent worthy targets. The bacterium Helicobacter pylori colonizes more than half of all people worldwide, causing gastritis, gastric ulcer, and conferring a greater risk of stomach cancer. The present medication therapy for H. pylori includes the use of antibiotics, which is associated with increasing incidence of bacterial resistance to traditional antibiotics. Therefore, the need for an alternative treatment method is urgent. In this study, four novel synthesis procedures of multivalent glycoconjugates were created. Three different scaffolds representing linear (chondroitin oligomer), cyclic (γ-cyclodextrin), and globular (dendrimer) molecules were used. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc all representing analogues of the tissue binding epitopes for H. pylori. The first synthetic method included the reductive amination of scaffold molecules modified to express primary amine groups, and in the case of dendrimer direct amination to scaffold molecule presenting 64 primary amine groups. The second method described a direct procedure for amidation of glycosylamine modified oligosaccharides to scaffold molecules presenting carboxyl groups. The final two methods that were created both included an oxime-linkage on linkers of different length. All the new synthetic procedures synthesized had the advantage of using unmodified reducing sugars as starting material making it easy to synthesize glycoconjugates of different specificity. In addition, the binding activity of an array of neoglycolipids to H. pylori was studied. Consequently, two new neolacto-based structures, Glcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer and GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer, with binding activity toward H. pylori were discovered. Interestingly, N-methyl and N-ethyl amide modification of the GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer glucuronic acid residue resulted in more effective H. pylori binding epitopes than the parent molecule.
Resumo:
A novel protein, named BAS-AH, was purified and characterized from the skin of the toad Bufo andrewsi. BAS-AH is a single chain protein and the apparent molecular weight is about 63 kDa as judged by SDS-PAGE. BAS-AH was determined to bind heme (0.89 mol heme/mol protein) as determined by pyridine haemochrome analysis. Fifty percentage cytotoxic concentration (CC50) of BAS-AH on C8166 cells was 9.5 mu M. However, at concentrations that showed little effect oil cell viability, BAS-AH displayed dose dependent inhibition oil HIV-1 infection and replication. The antiviral selectivity indexes corresponding to the measurements of syncytium formation and HIV-1 p24 (CC50/EC50) were 14.4 and 11.4, respectively, corresponding to the . BAS-AH also showed an inhibitory effect on the activity of recombinant HIV-1 reverse transcriptase (IC50 = 1.32 mu M). The N-terminal sequence of BAS-AH was determined to be NAKXKADVIGKISILLGQDNLSNIVAM, which exhibited little identity with other known anti-HIV-1 proteins. BAS-AH is devoid of antibacterial, protcolytic, trypsin inhibitory activity, (L)-amino acid oxidase activity and catalase activity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Baicalin (BA) has been shown with anti-HIV-1 activity. Zinc is a nutrient element. The anti-HIV-1 activity of zinc complex of baicalin (BA-Zn) in vitro was studied and compared with the anti-HIV-1 activities between BA and BA-Zn in the present study. Our results suggested that BA-Zn has lower cytotoxicity and higher anti-HIV-1 activity compared with those of BA in vitro. The CC(50)s of BA-Zn and BA were 221.52 and 101.73 muM, respectively. The cytotoxicity of BA-Zn was about 1.2-fold lower than that of BA. The BA and BA-Zn inhibited HIV-1 induced syncytium formation, HIV-1 p24 antigen and HIV-1 RT production. The EC(50)s of BA-Zn on inhibiting HIV-1 induced syncytium formation (29.08 muM) and RT production (31.17 muM) were lower than those of BA (43.27 and 47.34 muM, respectively). BA-Zn was more effective than BA in inhibiting the activities of recombinant RT and HIV-1 entry into host cells. Zinc coupling enhanced the anti-HTV-1 activity of baicalin. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A new trinorcycloartane triterpenoid, lancifodilactone H (1), and a new A ring-secocycloartane triterpenoid, lancifoic acid A (2), together with a known compound, nigranoic acid (3), were isolated from the leaves and stems of Schisandra lancifolia. Their
Resumo:
A 30 kDa beta-galactose-specific lectin named CVL was isolated from the polychaete marine worm Chaetopterus variopedatus (Annelida) and its anti-HIV-1 activity in vitro was determined. Results showed that CVL inhibited cytopathic effect induced by HIV-1 a
Resumo:
Several 2-heteroaryl-, 2-heteroarylcarbonylmethyl-, 2-arylcarbonylmethyl, and 2-arylethyl derivatives of S-dihydro(alkyloxy)benzyloxypyrimidines have been synthesized and the anti-HIV activities of these compounds were tested in C8166 cell and against RT
Resumo:
A series of (E)-N-phenylstyryl-N-alkylacetamides, 5, were synthesized by direct reduction-acetylation of beta-arylnitroolefins, followed by N-alkylation. The title compounds were characterized by H-1-NMR, EIMS and IR analysis. All the synthesized compound
Resumo:
In order to find compounds with superior anti human immunodeficiency virus type 1 (HIV-1) activity, twelve simple N-arylsulfonylindoles (3a-1) were synthesized and preliminarily evaluated as HIV-1 inhibitors in vitro for the first time. Several compounds