957 resultados para Anterior cingulate cortex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous studies, we demonstrated biphasic purinergic effects on prolactin (PRL) secretion stimulated by an adenosine A2 agonist. In the present study, we investigated the role of the activation of adenosine A1 receptors by (R)-N6-(2-phenylisopropyl)adenosine (R-PIA) at the pituitary level in in vitro PRL secretion. Hemipituitaries (one per cuvette in five replicates) from adult male rats were incubated. Administration of R-PIA (0.001, 0.01, 0.1, 1, and 10 µM) induced a reduction of PRL secretion into the medium in a U-shaped dose-response curve. The maximal reduction was obtained with 0.1 µM R-PIA (mean ± SEM, 36.01 ± 5.53 ng/mg tissue weight (t.w.)) treatment compared to control (264.56 ± 15.46 ng/mg t.w.). R-PIA inhibition (0.01 µM = 141.97 ± 15.79 vs control = 244.77 ± 13.79 ng/mg t.w.) of PRL release was blocked by 1 µM cyclopentyltheophylline, a specific A1 receptor antagonist (1 µM = 212.360 ± 26.560 ng/mg t.w.), whereas cyclopentyltheophylline alone (0.01, 0.1, 1 µM) had no effect. R-PIA (0.001, 0.01, 0.1, 1 µM) produced inhibition of PRL secretion stimulated by both phospholipase C (0.5 IU/mL; 977.44 ± 76.17 ng/mg t.w.) and dibutyryl cAMP (1 mM; 415.93 ± 37.66 ng/mg t.w.) with nadir established at the dose of 0.1 µM (225.55 ± 71.42 and 201.9 ± 19.08 ng/mg t.w., respectively). Similarly, R-PIA (0.01 µM) decreased (242.00 ± 24.00 ng/mg t.w.) the PRL secretion stimulated by cholera toxin (0.5 mg/mL; 1050.00 ± 70.00 ng/mg t.w.). In contrast, R-PIA had no effect (468.00 ± 34.00 ng/mg t.w.) on PRL secretion stimulation by pertussis toxin (0.5 mg/mL; 430.00 ± 26.00 ng/mg t.w.). These results suggest that inhibition of PRL secretion after A1 receptor activation by R-PIA is mediated by a Gi protein-dependent mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonin (5-HT1B) receptors play an essential role in the inhibition of aggressive behavior in rodents. CP-94,253, a 5-HT1B receptor agonist, can reduce aggression in male mice when administered directly into the ventro-orbitofrontal (VO) prefrontal cortex (PFC). The objective of the current study was to assess the effects of two selective 5-HT1B receptor agonists (CP-94,253 and CP-93,129), microinjected into the VO PFC, on maternal aggressive behavior after social instigation in rats. CP-94,253 (0.56 µg/0.2 µL, N = 8, and 1.0 µg/0.2 µL, N = 8) or CP-93,129 (1.0 µg/0.2 µL, N = 9) was microinjected into the VO PFC of Wistar rats on the 9th day postpartum and 15 min thereafter the aggressive behavior by the resident female against a male intruder was recorded for 10 min. The frequency and duration of aggressive and non-aggressive behaviors were analyzed using ANOVA and post hoc tests. CP-93,129 significantly decreased maternal aggression. The frequency of lateral attacks, bites and pinnings was reduced compared to control, while the non-aggressive behaviors and maternal care were largely unaffected by this treatment. CP-94,253 had no significant effects on aggressive or non-aggressive behaviors when microinjected into the same area of female rats. CP-93,129, a specific 5-HT1B receptor agonist, administered into the VO PFC reduced maternal aggressive behavior, while the CP-94,253 agonist did not significantly affect this behavior after social instigation in female rats. We conclude that only the 5-HT1B receptor agonist CP-93,129 administered into the VO PFC decreased aggression in female rats postpartum after social instigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Female rats are intensely affected by cocaine, with estrogen probably playing an important role in this effect. Progesterone modulates the GABA system and attenuates the effects of cocaine; however, there is no information about its relevance in changing GABA synthesis pathways after cocaine administration to female rats. Our objective was to investigate the influence of progesterone on the effects of repeated cocaine administration on the isoenzymes of glutamic acid decarboxylase (GAD65 and GAD67) mRNA in brain areas involved in the addiction circuitry. Ovariectomized, intact and progesterone replacement-treated female rats received saline or cocaine (30 mg/kg, ip) acutely or repeatedly. GAD isoenzyme mRNA levels were determined in the dorsolateral striatum (dSTR) and prefrontal cortex (PFC) by RT-PCR, showing that repeated, but not acute, cocaine decreased GADs/β-actin mRNA ratio in the dSTR irrespective of the hormonal condition (GAD65: P < 0.001; and GAD67: P = 0.004). In the PFC, repeated cocaine decreased GAD65 and increased GAD67 mRNA ratio (P < 0.05). Progesterone replacement decreased both GAD isoenzymes mRNA ratio after acute cocaine in the PFC (P < 0.001) and repeated cocaine treatment reversed this decrease (P < 0.001). These results suggest that cocaine does not immediately affect GAD mRNA expression, while repeated cocaine decreases both GAD65 and GAD67 mRNA in the dSTR of female rats, independently of their hormonal conditions. In the PFC, repeated cocaine increases the expression of GAD isoenzymes, which were decreased due to progesterone replacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5-Bromo-2’-deoxyuridine (BrdUrd) has long been known to interfere with cell differentiation. We found that treatment ofBradysia hygida larvae with BrdUrd during DNA puff anlage formation in the polytene chromosomes of the salivary gland S1 region noticeably affects anlage morphology. However, it does not affect subsequent metamorphosis to the adult stage. The chromatin of the chromosomal sites that would normally form DNA puffs remains very compact and DNA puff expansion does not occur with administration of 4 to 8 mM BrdUrd. Injection of BrdUrd at different ages provoked a gradient of compaction of the DNA puff chromatin, leading to the formation of very small to almost normal puffs. By immunodetection, we show that the analogue is preferentially incorporated into the DNA puff anlages. When BrdUrd is injected in a mixture with thymidine, it is not incorporated into the DNA, and normal DNA puffs form. Therefore, incorporation of this analogue into the amplified DNA seems to be the cause of this extreme compaction. Autoradiographic experiments and silver grains counting showed that this treatment decreases the efficiency of RNA synthesis at DNA puff anlages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical stimulation has been used for more than 100 years in neuroscientific and biomedical research as a powerful tool for controlled perturbations of neural activity. Despite quickly driving neuronal activity, this technique presents some important limitations, such as the impossibility to activate or deactivate specific neuronal populations within a single stimulation site. This problem can be avoided by pharmacological methods based on the administration of receptor ligands able to cause specific changes in neuronal activity. However, intracerebral injections of neuroactive molecules inherently confound the dynamics of drug diffusion with receptor activation. Caged compounds have been proposed to circumvent this problem, for spatially and temporally controlled release of molecules. Caged compounds consist of a protecting group and a ligand made inactive by the bond between the two parts. By breaking this bond with light of an appropriate wavelength, the ligand recovers its activity within milliseconds. To test these compounds in vivo, we recorded local field potentials (LFPs) from the cerebral cortex of anesthetized female mice (CF1, 60-70 days, 20-30 g) before and after infusion with caged γ-amino-butyric-acid (GABA). After 30 min, we irradiated the cortical surface with pulses of blue light in order to photorelease the caged GABA and measure its effect on global brain activity. Laser pulses significantly and consistently decreased LFP power in four different frequency bands with a precision of few milliseconds (P < 0.000001); however, the inhibitory effects lasted several minutes (P < 0.0043). The technical difficulties and limitations of neurotransmitter photorelease are presented, and perspectives for future in vivo applications of the method are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decreased the mortality rate and improved the recovery of the righting reflex in TBI mice, and ii) differentially changed the levels of several miRNAs, upregulating some and downregulating others. Furthermore, we revealed global upregulation of miR-21, miR-92a, and miR-874 and downregulation of miR-138, let-7c, and miR-124 expression among the sham-non-runner, TBI-non-runner, and TBI-runner groups. Quantitative reverse transcription polymerase chain reaction data (RT-qPCR) indicated good consistency with the microarray results. Our microarray-based analysis of miRNA expression in mice cerebral cortex after TBI revealed that some miRNAs such as miR-21, miR-92a, miR-874, miR-138, let-7c, and miR-124 could be involved in the prevention and protection afforded by voluntary exercise in a TBI model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm) occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interfilament spacing of the anterior byssus retractor muscle from Mytilus edulis was studied as the muscle was extended. It was found that variations in this spacing were very small and consistent with the hypothesis that the interfilament spacing was independent of the extension of the muscle. It was observed that the interfilament spacing was dependent on the osmolarity of the bathing medium. In concentrated solutions of the artificial seawater, the interfilament spacing decreased; while in dilute solutions of artificial seawater, it was observed that the interfilament spacing was increasing. X-ray diffraction patterns were obtained from fresh, and glutaraldehyde fixed, specimens of insect flight muscle from Sarcophaga bullata. There patterns were in general agreement with previous X-ray diffraction studies of insect flight muscle. A reflexion G at 93A was observed and interpreted as arising from diffraction in the mitochondria. Specimens of dried insect flight muscle produced a diffraction pattern consisting of arc and ring reflexions. This was interpreted as suggesting an ordered arrangement of cristae, in the mitochondria from these muscles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With repeated activity, force production, rate of force production, and relaxation time are impaired. These are characteristics ofa fatigued muscle (Vandenboom, 2004). However, brief bouts of near maximal to maximal activity results in the increased ability of the muscle to generate force, termed post activation potentiation (P AP)(V andervoort et aI., 1983). The purpose of the present study was to characterize motor unit firing rate (MUFR) in the unfatigued, potentiated tibialis anterior (TA). Using a quadrifilar needle electrode, MUFR was measured during a 5s 50% MVC in which the TA was either potentiated or unpotentiated; monopolar electrodes measured surface parameters. A lOs MVC was used to potentiate the muscle. Firing rate decreased significantly from 20.15±2.9Opps to 18.27±2.99pps, while mean power frequency decreased significantly from 60. 13±7.75 Hz to 53.62±8.56 Hz. No change in root mean square (RMS) was observed. Therefore, in the present study, MUFR decreases in response to a potentiated TA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document could not have been completed without the hard work of a number of individuals. First and foremost, my supervisor, Dr. David Gabriel deserves the utmost recognition for the immense effort and time spent guiding the production of this document through the various stages of completion. Also, aiding in the data collection, technical support, and general thought processing were Lab Technician Greig Inglis and fellow members of the Electromyographic Kinesiology Laboratory Jon Howard, Sean Lenhardt, Lara Robbins, and Corrine Davies-Schinkel. The input of Drs. Ted Clancy, Phil Sullivan and external examiner Dr. Anita Christie, all members ofthe assessment committee, was incredibly important and vital to the completion of this work. Their expertise provided a strong source of knowledge and went to ensure that this project was completed at exemplary level. There were a number of other individuals who were an immense help in getting this project off the ground and completed. The donation of their time and efforts was very generous and much needed in order to fulfill the requirements needed for completion of this study. Finally, I cannot exclude the contributions of my family throughout this project especially that of my parents whose support never wavers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to chronic stress can alter the structure and function of brain regions involved in learning and memory, and these effects are typically long-lasting if the stress occurs during sensitive periods of development. Until recently, adolescence has received relatively little attention as a sensitive period of development, despite marked changes in behaviour, heightened reactivity to stressors, and cognitive and neural maturation. Therefore, the purpose of the present study was to investigate the long-term effects of chronic stress in adolescence on two spatial learning and memory tasks (Morris water maze and Spatial Object Location test) and on a working memory task (Delayed Alternation task). Male rats were randomly assigned to chronic social instability stress (SS; daily 1 hour isolation and subsequent change of cage partner between postnatal days 30 and 45) or to a no-stress control group (CTL). During acquisition learning in the Morris water maze task, SS rats demonstrated impaired long-term memory for the location of the hidden escape platform compared to CTL rats, although the impairment was only seen after the first day of training. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 minutes), but not after shorter delays (15 or 60 minutes) compared to CTL rats. On the Delayed Alternation task, which assessed working memory across delays ranging from 5 to 90 seconds, no group differences were observed. These results are partially in line with previous research that revealed adult impairment on spatial learning and memory tasks after exposure to chronic social instability stress in adolescence. The observed deficits, however, appear to be limited to long-term memory as no group differences were observed during brief periods of retention.