830 resultados para Angle-ply composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based upon high-resolution thermal-infrared Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite imagery in combination with ERA-Interim atmospheric reanalysis data, we derived long-term polynya parameters such as polynya area, thin-ice thickness distribution and ice-production rates from daily cloud-cover corrected thin-ice thickness composites. Our study is based on a thirteen year investigation period (2002-2014) for the austral winter (1 April to 30 September) in the Antarctic Southern Weddell Sea. The focus lies on coastal polynyas which are important hot spots for new-ice formation, bottom-water formation and heat/moisture release into the atmosphere. MODIS has the capability to resolve even very narrow coastal polynyas. Its major disadvantage is the sensor limitation due to cloud cover. We make use of a newly developed and adapted spatial feature reconstruction scheme to account for cloud-covered areas. We find the sea-ice areas in front of Ronne and Brunt Ice Shelf to be the most active with an annual average polynya area of 3018 ± 1298 and 3516 ± 1420 km2 as well as an accumulated volume ice production of 31 ± 13 and 31 ± 12 km**3, respectively. For the remaining four regions, estimates amount to 421 ± 294 km**2 and 4 ± 3 km**3 (Antarctic Peninsula), 1148 ± 432 km**2 and 12 ± 5 km**3 (Iceberg A23A), 901 ± 703 km**2 and 10 ± 8 km**3 (Filchner Ice Shelf) as well as 499 ± 277 km**2 and 5 ± 2 km**3 (Coats Land). Our findings are discussed in comparison to recent studies based on coupled sea-ice/ocean models and passive-microwave satellite imagery, each investigating different parts of the Southern Weddell Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow transverse bedforms (ripples and dunes) are ubiquitous in rivers and coastal seas. Local hydrodynamics and transport conditions depend on the size and geometry of these bedforms, as they constitute roughness elements at the bed. Bedform influence on flow energy must be considered for the understanding of flow dynamics, and in the development and application of numerical models. Common estimations or predictors of form roughness (friction factors) are based mostly on data of steep bedforms (with angle-of-repose lee slopes), and described by highly simplified bedform dimensions (heights and lengths). However, natural bedforms often are not steep, and differ in form and hydraulic effect relative to idealised bedforms. Based on systematic numerical model experiments, this study shows how the hydraulic effect of bedforms depends on the flow structure behind bedforms, which is determined by the bedform lee side angle, aspect ratio and relative height. Simulations reveal that flow separation behind bedform crests and, thus, a hydraulic effect is induced at lee side angles steeper than 11 to 18° depending on relative height, and that a fully developed flow separation zone exists only over bedforms with a lee side angle steeper than 24°. Furthermore, the hydraulic effect of bedforms with varying lee side angle is evaluated and a reduction function to common friction factors is proposed. A function is also developed for the Nikuradse roughness (k s), and a new equation is proposed which directly relates k s to bedform relative height, aspect ratio and lee side angle.