941 resultados para Analysis Model
Resumo:
This study was conducted in one kidney, one clip (1K1C) Goldblatt hypertensive rats to evaluate vascular and cardiac autonomic control using different approaches: 1) evaluation of the autonomic modulation of heart rate (HR) and systolic arterial pressure (SAP) by means of autoregressive power spectral analysis 2) assessment of the cardiac baroreflex sensitivity; and 3) double blockade with methylatropine and propranolol. The 1K1C group developed hypertension and tachycardia. The 1K1C group also presented reduction in variance as well as in LF (0.23 +/- 0.1 vs. 1.32 +/- 0.2 ms(2)) and HF (6.6 +/- 0.49 vs. 15.1 +/- 0.61 ms(2)) oscillations of pulse interval. Autoregressive spectral analysis of SAP showed that 1K1C rats had an increase in variance and LF band (13.3 +/- 2.7 vs. 7.4 +/- 1.01 mmHg(2)) in comparison with the sham group. The baroreflex gain was attenuated in the hypertensive 1K1C (- 1.83 +/- 0.05 bpm/mmHg) rats in comparison with normotensive sham (-3.23 +/- 0.06 bpm/MmHg) rats. The autonomic blockade caused an increase in the intrinsic HR and sympathetic predominance on the basal HR of 1K1C rats. Overall, these data indicate that the tachycardia observed in the 1K1C group may be attributed to intrinsic cardiac mechanisms (increased intrinsic heart rate) and to a shift in the sympathovagal balance towards cardiac sympathetic over-activity and vagal suppression associated to depressed baroreflex sensitivity. Finally, the increase in the LF components of SAP also suggests an increase in sympathetic activity to peripheral vessels. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background. Hydroxyethylstarch (HES) is a synthetic polymer of glucose that has been suggested for therapeutic use in long-term plasma expansion. The aim of this study was to test the hypothesis that the infusion of a small volume of HES may provide benefits in systemic and regional hemodynamics and metabolism in a brain-dead canine model compared with large volume crystalloid resuscitation. Methods. Fourteen mongrel dogs were subjected to a brain-death protocol by consecutive insufflations of a balloon catheter in the epidural space. One hour after induction of brain-death, the animals were randomly assigned to two groups: NS (0.9% NaCl, 33mL/kg), and HES (6% HES 450/0.7, 17mL/Kg). Systemic and regional hemodynamics were evaluated using Swan-Ganz, ultrasonic flowprobes, and arterial catheters. Serial blood samples were collected for blood gas, electrolyte, and serum chemistry analysis. Systemic, hepatic, and splanchnic O(2)-derived variables were also calculated. Results. Epidural balloon insufflations induced a significant increase in mean arterial pressure, cardiac output (MAP and CO, respectively), regional blood flow, and systemic vascular resistance. Following the hyperdynamic phase, severe hypotension with normalization of systemic and regional blood flow was observed. Fluid resuscitation induced a prompt increase in MAP, CO, and portal vein blood flow, and a significant reduction in systemic and pulmonary vascular resistance. There were no differences between groups in metabolic indices, liver function tests (LFTs), or renal function tests. HES was more effective than NS in restoring cardiac performance in the first 2h after fluid resuscitation (P < 0.05). Both tested solutions partially and temporarily restored systemic and regional oxygen delivery. Conclusion. Small volumes of 6% HES 450/0.7 improved cardiovascular performance and provided the same regional hemodynamic and metabolic benefits of large volumes of isotonic crystalloid solutions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This study was undertaken to test whether the structural remodelling of pulmonary parenchyma can be sequentially altered in a model and method that demonstrate the progression of the disease and result in remodelling within the lungs that is typical of idiopathic pulmonary fibrosis. Three groups of mice were studied: (i) animals that received 3-5-di-tert-butyl-4-hydroxytoluene (BHT) and were killed after 2 weeks (early BHT = 9); (ii) animals that received BHT and were killed after 4 weeks (late BHT = 11); (iii) animals that received corn oil solution (control = 10). The mice were placed in a ventilated Plexiglas chamber with a mixture of pure humidified oxygen and compressed air. Lung histological sections underwent haematoxylin-eosin, immunohistochemistry (epithelial, endothelial and immune cells) and specific staining (collagen/elastic fibres) methods for morphometric analysis. When compared with the control group, early BHT and late BHT groups showed significant decrease of type II pneumocytes, lower vascular density in both and higher endothelial activity. CD4 was increased in late BHT compared with early and control groups, while CD8, macrophage and neutrophil cells were more prominent only in early BHT. The collagenous fibre density were significantly higher only in late BHT, whereas elastic fibre content in late BHT was lower than that in control group. We conclude that the BHT experimental model is pathologically very similar to human usual interstitial pneumonia. This feature is important in the identification of animal models of idiopathic pulmonary fibrosis that can accurately reflect the pathogenesis and progression of the human disease.
Resumo:
This study conducts a cost-effectiveness analysis of a childhood universal varicella vaccination program in Brazil. An age and time-dependent dynamic model was developed to estimate the incidence of varicella for 30 years. Assuming a single-dose schedule; vaccine efficacy of 85% and coverage of 80%, the program could prevent 74,422,058 cases and 2905 deaths. It would cost R$ 3,178,396,110 and save R$ 660,076,410 to the society and R$ 365,602,305 to the healthcare system. The program is cost-effective (R$ 14,749 and R$ 16,582 per life-year saved under the societal and the healthcare system`s perspective, respectively). The program`s cost-effectiveness is highly sensitive to the vaccine price and number of doses. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Introduction. Capybaras (Hydrochoerus hydrochaeris) are considered amplifying hosts of Rickettsia sp. These rodents are usually parasitized by the tick vector, Amblyomma cajennense, the main vector of rickettsioses in humans and animals in South America. Capybaras can be used as sentinels in detection of circulation of rickettsiae. Objective. Antibodies to rickettsiae of spotted fever group were detected in capybaras in a rural area of Cordoba Province, northern Colombia. Materials and methods. Sera were analyzed from 36 capybaras in a rural area of Monteria (village of San Jeronimo) in Cordoba. For the detection of IgG antibodies, indirect immunofluorescence was performed. The antigens were derived from R. rickettsia strain Taiacu isolated in Brazil. Capybara sera were diluted 1:64 for IFA analysis. Ticks were collected from each capybara (also known as chiguiro) and identified to species. Results. The seroprevalence of spotted fever group Rickettsia was 22% (8 capybaras). Four sera had a titer of 1:64, 3 had a titer of 1:128 and one serum had a titer of 1:512. All ticks removed from the capybaras (n=933) were taxonomically identified as Amblyomma cajennense. Conclusion. Colombia has areas endemic for rickettsioses, as indicated by confirmed annual outbreaks. The current study reports the first evidence of natural rickettsial infection of the spotted fever group in capybaras from Colombia. The findings suggest that capybaras can be used as sentinels for the circulation of rickettsiae and can identify endemic areas for the transmission of rickettsial diseases.
Resumo:
Anderson theorizes that development of the aquaculture of a species of fish (also captured in an open-access fishery) favours the conservation of its wild stocks, if competitive market conditions prevail. However, this theory is shown to be subject to significant limitations. While this is less so within his model, it is particularly so in an extended one outlined here. The extended model allows for the possibility that aquaculture development can impact negatively on wild stocks thereby shifting the supply curve of the capture fishery, or raise the demand for the fish species subject both to aquaculture and capture. Such development can threaten wild stocks and their biodiversity. While aquaculture development could in principle have no impact on the biodiversity of wild stocks or even raise aquatic biodiversity overall, its impact in the long-term probably will be one of reducing aquatic diversity both in the wild and overall.
Resumo:
Although the cariostatic effects of CO(2) laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 mu m CO(2) laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2-2.5 J/cm(2); G3-4.0 J/cm(2); G4-5.0 J/cm(2); and G5-6.0 J/cm(2). Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5 degrees C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm(2) were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm(2), laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm(2) could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.
Resumo:
Objective: This study aimed to analyze in vitro inhibitory effects of restorative materials containing the antibacterial monomer 12-methacryloyloxydodecylpyridinium bromide (MDPB) on the formation of artificial secondary root caries lesions. Methods: Class V cavities (2 mm x 2 mm) were prepared in 75 human root fragments. Specimens were randomly divided into five groups (n = 15 fragments per group) and restored as follows: (I) MDPB-free adhesive system + MDPB-free composite (negative control); (II) resin modified glass ionomer (RM-GIC; positive control); (III) MDPB-free adhesive system + MDPB-containing composite (2.83% MDPB); (IV) MDPB-containing adhesive system + MDPB-free composite; M MDPB-containing adhesive system + MDPB-containing composite. Artificial secondary root caries lesions were produced by a biological artificial caries challenge. The restored specimens were immersed into a culture medium containing Streptococcus mutans and sucrose for 15 days. Histological slices (80 +/- 20 mu m) of the specimens were used for measuring the mean depths of the artificial lesions produced in both margins of the restorations using polarized light microscopy. Results were expressed in percentage related to the mean depth of the negative control, considered 100%. Data were compared by ANOVA followed by the Tukey`s test (p <= 0.05). Results: The depths of lesions adjacent to cavities filled with RM-GIC (GII; 85.17 +/- 15.2%) were significantly (p < 0.01) shallower than those adjacent to restorations with MDPB-free composite (GI; 100.00 +/- 10.04%), despite the presence of MDPB in the adhesive system (GIV; 101.95 +/- 21.32%). The depths of lesions adjacent to cavities restored with MDPB-containing composite (GIII; 82.68 +/- 12.81% and GV; 85.65 +/- 15.42%), despite the adhesive system used, were similar to those of RM-GIC (GII). Mean lesions depths in these groups decreased from 13% (GV) to 17% (GIII) in relation to the negative control (GI). Conclusions: MDPB-containing composite inhibits the progression of artificial secondary root caries lesions regardless of adhesive systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Oral squamous cell carcinoma (OSCC) accounts for more than 95% of all malignant neoplasms in the oral cavity. Although several studies have shown the epidemiology of this cancer in Brazil, there do not seem to be any studies that describe the prognostic factors related to OSCC in the Amazon region. Therefore, the aim of this study was to determine the survival rate and prognostic significance of different factors in patients from this region affected by OSCC. Data from 85 patients with histologically confirmed squamous cell carcinoma of the tongue and floor of the mouth identified from the Ofir Loyola Hospital archives were collected and analyzed using univariate (log-rank test) and multivariate (Cox proportional hazard model) tests. The overall 5-year survival rate was found to be 27%. Univariate analysis showed that the 5-year survival rate was significantly higher for younger (<= 45 y) female patients, patients with T1-2 tumors and clinically clear neck nodes (N0), patients with early stage cancers (AJCC stage I-II), and patients treated with surgical procedures. However, multivariate analysis showed that the 5-year survival rate was significantly higher only in the younger patients and those who underwent surgical treatment. The age of the patient at the moment of diagnosis and treatment with surgical procedures were the only independent prognostic factors that affected the 5-year survival rate of the patients in this region.
Resumo:
Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading. Type 1 diabetes results in bone remodeling, suggesting that this disease might affect orthodontic tooth movement. The present study investigated the effects of the diabetic state on orthodontic tooth movement. An orthodontic appliance was placed in normoglycemic (NG), streptozotocin-induced diabetes (DB), and insulin-treated DB (IT) C57BL6/J mice. Histomorphometric analysis and quantitative PCR of periodontium were performed. The DB mice exhibited greater orthodontic tooth movement and had a higher number of tartrate-resistant acid phosphate (TRAP) -positive osteoclasts than NG mice. This was associated with increased expression of factors involved in osteoclast activity and recruitment (Rankl, Csf1, Ccl2, Ccl5, and Tnfa) in DB mice. The expression of osteoblastic markers (Runx2, Ocn, Col1, and Alp) was decreased in DB mice. Reversal of the diabetic state by insulin treatment resulted in morphological findings similar to those of NG mice. These results suggest that the diabetic state up-regulates osteoclast migration and activity and down-regulates osteoblast differentiation, resulting in greater orthodontic tooth movement.
Resumo:
Background: Understanding how clinical variables affect stress distribution facilitates optimal prosthesis design and fabrication and may lead to a decrease in mechanical failures as well as improve implant longevity. Purpose: In this study, the many clinical variations present in implant-supported prosthesis were analyzed by 3-D finite element method. Materials and Method: A geometrical model representing the anterior segment of a human mandible treated with 5 implants supporting a framework was created to perform the tests. The variables introduced in the computer model were cantilever length, elastic modulus of cancellous bone, abutment length, implant length, and framework alloy (AgPd or CoCr). The computer was programmed with physical properties of the materials as derived from the literature, and a 100N vertical load was used to simulate the occlusal force. Images with the fringes of stress were obtained and the maximum stress at each site was plotted in graphs for comparison. Results: Stresses clustered at the elements closest to the loading point. Stress increase was found to be proportional to the increase in cantilever length and inversely proportional to the increase in the elastic modulus of cancellous bone. Increasing the abutment length resulted in a decrease of stress on implants and framework. Stress decrease could not be demonstrated with implants longer than 13 mm. A stiffer framework may allow better stress distribution. Conclusion: The relative physical properties of the many materials involved in an implant-supported prosthesis system affect the way stresses are distributed.
Resumo:
A mixture model incorporating long-term survivors has been adopted in the field of biostatistics where some individuals may never experience the failure event under study. The surviving fractions may be considered as cured. In most applications, the survival times are assumed to be independent. However, when the survival data are obtained from a multi-centre clinical trial, it is conceived that the environ mental conditions and facilities shared within clinic affects the proportion cured as well as the failure risk for the uncured individuals. It necessitates a long-term survivor mixture model with random effects. In this paper, the long-term survivor mixture model is extended for the analysis of multivariate failure time data using the generalized linear mixed model (GLMM) approach. The proposed model is applied to analyse a numerical data set from a multi-centre clinical trial of carcinoma as an illustration. Some simulation experiments are performed to assess the applicability of the model based on the average biases of the estimates formed. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Our goal was to evaluate bone neoformation promoted by a bovine xenograft composite (XC) compared with autogenous graft for maxillary sinus augmentation in a rabbit model. The left maxillary sinus of 18 male rabbits was filled with 200 mg of cortical and cancellous autogenous bone and the right sinus was filled with 200 mg of a composite comprised organic and inorganic bovine matrices, pool of bBMPs and collagen. Postoperative implant intervals of 2, 4, and 8 weeks were analyzed. Differences in the bone optical density among the groups and experimental periods were evaluated by computed tomography analysis. The tissue response was evaluated by histomorphometric analysis of the newly formed bone, connective tissue and/or granulation tissue, residual material, and bone marrow. The tomographic analyses showed a maximum optical density in the 4-week period for both groups. Histologically, an inflammatory infiltrate was observed at 2 weeks in the XC group but exclusively around the organic particles of the biomaterial. Regarding to the amount of newly formed bone, no statistical differences (p > 0.05) were observed among the two treatments throughout the implant intervals. However, by the end of the 8 weeks, the quantity of bone marrow was two times greater (p < 0.05) in the control group than in the XC group. In conclusion, the xenograft composite promotes formation of new bone in a similar fashion to autogenous bone and could therefore be considered a biomaterial with potential applications as a bone substitute in maxillary sinus floor augmentation. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Spinal cord injury (SCI) causes motor and sensory deficits that impair functional performance, and significantly impacts life expectancy and quality. Animal models provide a good opportunity to test therapeutic strategies in vivo. C57BL/6 mice were subjected to laminectomy at T9 and compression with a vascular clip (30 g force, 1 min). Two groups were analyzed: injured group (SCI, n = 33) and laminectomy only (Sham, n = 15). Locomotor behavior (Basso mouse scale-BMS and global mobility) was assessed weekly. Morphological analyses were performed by LM and EM. The Sham group did not show any morphofunctional alteration. All SCI animals showed flaccid paralysis 24 h after injury. with subsequent improvement. The BMS score of the SCI group improved until the intermediate phase (2.037 +/- 1.198): the Sham animals maintained the highest BMS score (8.981 +/- 0.056). p < 0.001 during the entire time. The locomotor speed was slower in the SCI animals (5.581 +/- 0.871) than in the Sham animals (15.80 +/- 1.166), p < 0.001. Morphological analysis of the SCI group showed, in the acute phase, edema, hemorrhage, multiple cavities, fiber degeneration, cell death and demyelination. In the chronic phase we observed glial scarring, neuron death, and remyelination of spared axons by oligodendrocytes and Schwann cells. In conclusion, we established a simple, reliable, and inexpensive clip compression model in mice, with functional and morphological reproducibility and good validity. The availability of producing reliable injuries with appropriate outcome measures represents great potential for studies involving cellular mechanisms of primary injury and repair after traumatic SCI. (C) 2008 Elsevier B.V. All rights reserved.