878 resultados para Ambient stability
Resumo:
Whilst not true in all cases, the microbial communities that chronically infect the airways of patients with CF can vary little over a year despite antibiotic perturbation. The species present tended to vary more between than within subjects, suggesting that each CF airway infection is unique, with relatively stable and resilient bacterial communities. The inverse relationship between community richness and disease severity is similar to findings reported in other mucosal infections.
Resumo:
Objectives A pharmacy Central Intravenous Additives Service (CIVAS) provides ready to use injectable medicines. However, manipulation of a licensed injectable medicine may significantly alter the stability of drug(s) in the final product. The aim of this study was to develop a stability indicating assay for CIVAS produced dobutamine 500 mg in 50 ml dextrose 1% (w/v) prefilled syringes, and to allocate a suitable shelf life. Methods A stability indicating high performance liquid chromatography (HPLC) assay was established for dobutamine. The stability of dobutamine prefilled syringes was evaluated under storage conditions of 4°C (protected from light), room temperature (protected from light), room temperature (exposed to light) and 40°C (protected from light) at various time points (up to 42 days). Results An HPLC method employing a Hypersil column, mobile phase (pH=4.0) consisting of 82:12:6 (v/v/v) 0.05 M KH2PO4:acetonitrile:methanol plus 0.3% (v/v) triethylamine with UV detection at λ=280 nm was specific for dobutamine. Under different storage conditions only samples stored at 40°C showed greater than 5% degradation (5.08%) at 42 days and had the shortest T95% based on this criterion (44.6 days compared with 111.4 days for 4°C). Exposure to light also reduced dobutamine stability. Discolouration on storage was the limiting factor in shelf life allocation, even when dobutamine remained within 5% of the initial concentration. Conclusions A stability indicating HPLC assay for dobutamine was developed. The shelf life recommended for the CIVAS product was 42 days at 4°C and 35 days at room temperature when protected from light.
Resumo:
Using UV and srCD spectroscopy it is found that loop length within the i-motif structure is important for both thermal and pH stability, but in contrast to previous statements, it is the shorter loops that exhibit the highest stability.
Resumo:
An experimental search for crystalline forms of creatine including a variable temperature X-ray powder diffraction study has produced three polymorphs and a formic acid solvate. The crystal structures of creatine forms I and II were determined from X-ray powder diffraction data plus the creatine formic acid (1 : 1) solvate structure was obtained by single crystal X-ray diffraction methods. Evidence of a third polymorphic form of creatine obtained by rapid desolvation of creatine monohydrate is also presented. The results highlight the role of automated parallel crystallisation, slurry experiments and VT-XRPD as powerful techniques for effective physical form screening. They also highlight the importance of various complementary analytical techniques in structural characterisation and in achieving better understanding of the relationship between various solid-state forms. The structural relationships between various solid-state forms of creatine using the XPac method provided a rationale for the different relative stabilities of forms I and II of creatine with respect to the monohydrate form.
Resumo:
The effect of the tensor component of the Skyrme effective nucleon-nucleon interaction on the single-particle structure in superheavy elements is studied. A selection of the available Skyrme forces has been chosen and their predictions for the proton and neutron shell closures investigated. The inclusion of the tensor term with realistic coupling strength parameters leads to a small increase in the spin-orbit splitting between the proton 2f7/2 and 2f5/2 partners, opening the Z=114 shell gap over a wide range of nuclei. The Z=126 shell gap, predicted by these models in the absence of the tensor term, is found to be stongly dependent on neutron number with a Z=138 gap opening for large neutron numbers, having a consequent implication for the synthesis of neutron-rich superheavy elements. The predicted neutron shell structures remain largely unchanged by inclusion of the tensor component.
Resumo:
Heat stability was evaluated in bulk raw milk, collected throughout the year and subjected to ultra-high temperature (UHT) or in-container sterilisation, with and without added calcium chloride (2 mM), disodium hydrogen phosphate (DSHP, 10 mM) and trisodium citrate (TSC, 10 mM). More sediment was observed following in-container sterilisation (0.24%) compared with UHT (0.19%). Adding CaCl2 made the milk more unstable to UHT than to in-container sterilisation, while adding DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability. DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability.
Resumo:
There are potential nutritional and sensory benefits of adding sauces to hospital meals. The aim of this study was to develop nutrient fortified sauces with acceptable sensory properties suitable for older people at risk of under-nutrition. Tomato, gravy and white sauce were fortified with macro and micro-nutrients using food ingredients rich in energy and protein as well as vitamin and mineral premixes. Sensory profile was assessed by a trained panel. Hedonic liking of fortified compared with standard sauces was evaluated by healthy older volunteers. The fortified sauces had higher nutritional value than the conventional ones, for example the energy content of the fortified tomato, white sauce and gravy formulations were increased between 2.5 and 4 fold compared to their control formulations. Healthy older consumers preferred the fortified tomato sauce compared with unfortified. There were no significant differences in liking between the fortified and standard option for gravy. There were limitations in the extent of fortification with protein, potassium and magnesium, as excessive inclusion resulted in bitterness, undesired flavours or textural issues. This was particularly marked in the white sauce to the extent that their sensory characteristics were not sufficiently optimised for hedonic testing. It is proposed that the development of fortified sauces is a simple approach to improving energy intake for hospitalised older people, both through the nutrient composition of the sauce itself and due to the benefits of increasing sensorial taste and lubrication in the mouth.
Resumo:
The purity and structural stability of the high thermoelectric performance Cu12Sb4S13 and Cu10.4Ni1.6Sb4S13 tetrahedrite phases, synthesized by solid–liquid–vapor reaction and Spark Plasma Sintering, were studied at high temperature by Rietveld refinement using high resolution X-ray powder diffraction data, DSC/TG measurements and high resolution transmission electron microscopy. In a complementary study, the crystal structure of Cu10.5Ni1.5Sb4S13 as a function of temperature was investigated by powder neutron diffraction. The temperature dependence of the structural stability of ternary Cu12Sb4S13 is markedly different to that of the nickel-substituted phases, providing clear evidence for the significant and beneficial role of nickel substitution on both sample purity and stability of the tetrahedrite phase. Moreover, kinetic effects on the phase stability/decomposition have been identified and discussed in order to determine the maximum operating temperature for thermoelectric applications. The thermoelectric properties of these compounds have been determined for high density samples (>98%) prepared by Spark Plasma Sintering and therefore can be used as reference values for tetrahedrite samples. The maximum ZT of 0.8 was found for Cu10.4Ni1.6Sb4S13 at 700 K.
Resumo:
Background Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis. Results The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg−1 (n = 3; ± std dev) per individual amino acid); the CaCO3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22–35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν2: ν4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. Conclusions ACC present in earthworm CaCO3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components.
Resumo:
The effect of high pressure homogenisation (HPH) and heat treatments on physicochemical properties and physical stability of almond and hazelnut milks was studied. Vegetable milks were obtained and homogenised by applying 62, 103 and 172 MPa (MF1, MF2 and MF3, respectively). Untreated and MF3 samples were also submitted to two different heat treatments (85 °C/30 min (LH) or 121 °C/15 min (HH)). Physical and structural properties of the products were greatly affected by heat treatments and HPH. In almond milk, homogenised samples showed a significant reduction in particle size, which turned from bimodal and polydisperse to monodisperse distributions. Particle surface charge, clarity and Whiteness Index were increased and physical stability of samples was improved, without affecting either viscosity or protein stability. Hazelnut beverages showed similar trends, but HPH notably increased their viscosity while change their rheological behaviour, which suggested changes in protein conformation. HH treatments caused an increment of particle size due to the formation oil droplet-protein body clusters, associated with protein denaturation. Samples submitted to the combined treatment MF3 and LH showed the greatest stability.
Resumo:
This study investigated the stability of freeze dried and fluid bed dried alginate microcapsules coated with chitosan containing model probiotic bacteria, Lactobacillus plantarum, during storage for up to 45 days at different water activities (0.11, 0.23, 0.40 and 0.70) and temperatures (4, 30 and 37 °C). The loss in cell viability was around 0.8 log in the case of fluid bed drying and around 1.3 in the case of freeze drying, with the former method resulting in dried capsules of smaller size (~ 1 mm vs 1.3 mm), more irregular shape, and with a rougher surface. In both cases, the water activity and water content were less than 0.25 and 10% w/w, respectively, which favours high storage stability. The storage stability studies demonstrated that as the water activity and temperature decreased the survival of the dried encapsulated cells increased. Considerably better survival was observed for fluid bed dried encapsulated cells compared to freeze dried encapsulated cells and freeze dried free cells with 10% sucrose (control), and in some cases, e.g. at 4 and 30 °C at water activities of 0.11, 0.23 and 0.40, there was more than 1 log difference after 45 days, with concentrations higher than 108 CFU/g after 45 days of storage. The results indicate that fluid bed drying is an effective and efficient manufacturing method to produce probiotic containing capsules with enhanced storage stability.
Resumo:
This study investigated the effects of increased genetic diversity in winter wheat (Triticum aestivum L.), either from hybridization across genotypes or from physical mixing of lines, on grain yield, grain quality, and yield stability in different cropping environments. Sets of pure lines (no diversity), chosen for high yielding ability or high quality, were compared with line mixtures (intermediate level of diversity), and lines crossed with each other in composite cross populations (CCPn, high diversity). Additional populations containing male sterility genes (CCPms) to increase outcrossing rates were also tested. Grain yield, grain protein content, and protein yield were measured at four sites (two organically-managed and two conventionally-managed) over three years, using seed harvested locally in each preceding year. CCPn and mixtures out-yielded the mean of the parents by 2.4% and 3.6%, respectively. These yield differences were consistent across genetic backgrounds but partly inconsistent across cropping environments and years. Yield stability measured by environmental variance was higher in CCPn and CCPms than the mean of the parents. An index of yield reliability tended to be higher in CCPn, CCPms and mixtures than the mean of the parents. Lin and Binns’ superiority values of yield and protein yield were consistently and significantly lower (i.e. better) in the CCPs than in the mean of the parents, but not different between CCPs and mixtures. However, CCPs showed greater early ground cover and plant height than mixtures. When compared with the (locally non-predictable) best-yielding pure line, CCPs and mixtures exhibited lower mean yield and somewhat lower yield reliability but comparable superiority values. Thus, establishing CCPs from smaller sets of high-performing parent lines might optimize their yielding ability. On the whole, the results demonstrate that using increased within-crop genetic diversity can produce wheat crops with improved yield stability and good yield reliability across variable and unpredictable cropping environments.
Resumo:
Bornite, Cu5FeS4, is a naturally-occuring mineral with an ultralow thermal conductivity and potential for thermoelectric power generation. We describe here a new, easy and scalable route to synthesise bornite, together with the thermoelectric behaviour of manganese-substituted derivatives, Cu5Fe1-xMnxS4 (0 ≤ x ≤ 0.10). The electrical and thermal transport properties of Cu5Fe1-xMnxS4 (0 ≤ x ≤ 0.10), which are p-type semiconductors, were measured from room temperature to 573 K. The stability of bornite was investigated by thermogravimetric analysis under inert and oxidising atmospheres. Repeated measurements of the electrical transport properties confirm that bornite is stable up to 580 K under an inert atmosphere, while heating to 890 K results in rapid degradation. Ball milling leads to a substantial improvement in the thermoelectric figure of merit of unsusbtituted bornite (ZT = 0.55 at 543 K), when compared to bornite prepared by conventional high-temperature synthesis (ZT < 0.3 at 543 K). Manganese-substituted samples have a ZT comparable to that of unsubstituted bornite.