948 resultados para Ambient atmosphere
Resumo:
Perfluorodecalin (C10F18) has a range of medical uses that have led to small releases. Recently, it has been proposed as a carrier of vaccines, which could lead to significantly larger emissions. Since its emissions are controlled under the Kyoto Protocol, it is important that values for the global warming potential (GWP) are available. For a 50:50 mixture of the two isomers of perfluorodecalin, laboratory measurements, supplemented by theoretical calculations, give an integrated absorption cross-section of 3.91 x 10(-16) cm(2) molecule(-1) cm(-1) over the spectral region 0-1500 cm(-1); calculations yield a radiative efficiency of 0.56 W m(-2) ppbv(-1) and a 100-year GWP, relative to carbon dioxide, of 7200 assuming a lifetime of 1000 years. We report the first atmospheric measurements of perfluorodecalin, at Bristol, UK and Mace Head, Ireland, where volume mixing ratios are about 1.5 x 10(-15). At these concentrations, it makes a trivial contribution to climate change, but on a per molecule basis it is a potent greenhouse gas, indicating the need for careful assessment of its possible future usage. (c) 2005 Elsevier Ltd. All rights reserved.
Research agenda in context-specific semantic resolution of security and QoS for ambient intelligence
Resumo:
Driven by new network and middleware technologies such as mobile broadband, near-field communication, and context awareness the so-called ambient lifestyle will foster innovative use cases in different domains. In the EU project Hydra high-level security, trust and privacy concerns such as loss of control, profiling and surveillance are considered at the outset. At the end of this project the. Hydra middleware development platform will have been designed so as to enable developers to realise secure ambient scenarios. This paper gives a short introduction to the Hydra project and its approach to ensure security by design. Based on the results of a focus group analysis of the user domain "building automation" typical threats are evaluated and their risks are assessed. Then, specific security requirements with respect to security, privacy, and trust are derived in order to incorporate them into the Hydra Security Meta-Model. How concepts such as context, semantic resolution of security, and virtualisation support the overall Hydra approach will be introduced and illustrated on the basis of it technical building automation scenario.
Resumo:
The transport sector emits a wide variety of gases and aerosols, with distinctly different characteristics which influence climate directly and indirectly via chemical and physical processes. Tools that allow these emissions to be placed on some kind of common scale in terms of their impact on climate have a number of possible uses such as: in agreements and emission trading schemes; when considering potential trade-offs between changes in emissions resulting from technological or operational developments; and/or for comparing the impact of different environmental impacts of transport activities. Many of the non-CO2 emissions from the transport sector are short-lived substances, not currently covered by the Kyoto Protocol. There are formidable difficulties in developing metrics and these are particularly acute for such short-lived species. One difficulty concerns the choice of an appropriate structure for the metric (which may depend on, for example, the design of any climate policy it is intended to serve) and the associated value judgements on the appropriate time periods to consider; these choices affect the perception of the relative importance of short- and long-lived species. A second difficulty is the quantification of input parameters (due to underlying uncertainty in atmospheric processes). In addition, for some transport-related emissions, the values of metrics (unlike the gases included in the Kyoto Protocol) depend on where and when the emissions are introduced into the atmosphere – both the regional distribution and, for aircraft, the distribution as a function of altitude, are important. In this assessment of such metrics, we present Global Warming Potentials (GWPs) as these have traditionally been used in the implementation of climate policy. We also present Global Temperature Change Potentials (GTPs) as an alternative metric, as this, or a similar metric may be more appropriate for use in some circumstances. We use radiative forcings and lifetimes from the literature to derive GWPs and GTPs for the main transport-related emissions, and discuss the uncertainties in these estimates. We find large variations in metric (GWP and GTP) values for NOx, mainly due to the dependence on location of emissions but also because of inter-model differences and differences in experimental design. For aerosols we give only global-mean values due to an inconsistent picture amongst available studies regarding regional dependence. The uncertainty in the presented metric values reflects the current state of understanding; the ranking of the various components with respect to our confidence in the given metric values is also given. While the focus is mostly on metrics for comparing the climate impact of emissions, many of the issues are equally relevant for stratospheric ozone depletion metrics, which are also discussed.
Resumo:
The climatology of a stratosphere-resolving version of the Met Office’s climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations—the tropical “tape recorder”—is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasi-biennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small.
Resumo:
This paper describes the impact of changing the current imposed ozone climatology upon the tropical Quasi-Biennial Oscillation (QBO) in a high top climate configuration of the Met Office U.K. general circulation model. The aim is to help distinguish between QBO changes in chemistry climate models that result from temperature-ozone feedbacks and those that might be forced by differences in climatology between previously fixed and newly interactive ozone distributions. Different representations of zonal mean ozone climatology under present-day conditions are taken to represent the level of change expected between acceptable model realizations of the global ozone distribution and thus indicate whether more detailed investigation of such climatology issues might be required when assessing ozone feedbacks. Tropical stratospheric ozone concentrations are enhanced relative to the control climatology between 20–30 km, reduced from 30–40 km and enhanced above, impacting the model profile of clear-sky radiative heating, in particular warming the tropical stratosphere between 15–35 km. The outcome is consistent with a localized equilibrium response in the tropical stratosphere that generates increased upwelling between 100 and 4 hPa, sufficient to account for a 12 month increase of modeled mean QBO period. This response has implications for analysis of the tropical circulation in models with interactive ozone chemistry because it highlights the possibility that plausible changes in the ozone climatology could have a sizable impact upon the tropical upwelling and QBO period that ought to be distinguished from other dynamical responses such as ozone-temperature feedbacks.
Resumo:
Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses.
Resumo:
The hypothesis of a low dimensional martian climate attractor is investigated by the application of the proper orthogonal decomposition (POD) to a simulation of martian atmospheric circulation using the UK Mars general circulation model (UK-MGCM). In this article we focus on a time series of the interval between autumn and winter in the northern hemisphere, when baroclinic activity is intense. The POD is a statistical technique that allows the attribution of total energy (TE) to particular structures embedded in the UK-MGCM time-evolving circulation. These structures are called empirical orthogonal functions (EOFs). Ordering the EOFs according to their associated energy content, we were able to determine the necessary number to account for a chosen amount of atmospheric TE. We show that for Mars a large fraction of TE is explained by just a few EOFs (with 90% TE in 23 EOFs), which apparently support the initial hypothesis. We also show that the resulting EOFs represent classical types of atmospheric motion, such as thermal tides and transient waves. Thus, POD is shown to be an efficient method for the identification of different classes of atmospheric modes. It also provides insight into the non-linear interaction of these modes.
Resumo:
In this study we quantify the relationship between the aerosol optical depth increase from a volcanic eruption and the severity of the subsequent surface temperature decrease. This investigation is made by simulating 10 different sizes of eruption in a global circulation model (GCM) by changing stratospheric sulfate aerosol optical depth at each time step. The sizes of the simulated eruptions range from Pinatubo‐sized up to the magnitude of supervolcanic eruptions around 100 times the size of Pinatubo. From these simulations we find that there is a smooth monotonic relationship between the global mean maximum aerosol optical depth anomaly and the global mean temperature anomaly and we derive a simple mathematical expression which fits this relationship well. We also construct similar relationships between global mean aerosol optical depth and the temperature anomaly at every individual model grid box to produce global maps of best‐fit coefficients and fit residuals. These maps are used with caution to find the eruption size at which a local temperature anomaly is clearly distinct from the local natural variability and to approximate the temperature anomalies which the model may simulate following a Tambora‐sized eruption. To our knowledge, this is the first study which quantifies the relationship between aerosol optical depth and resulting temperature anomalies in a simple way, using the wealth of data that is available from GCM simulations.
Resumo:
The application of oxygen isotope ratios ({delta}18O) from freshwater bivalves as a proxy for river discharge conditions in the Rhine and Meuse rivers is investigated. We compared a dataset of water temperature and water {delta}18O values with a selection of recent shell {delta}18O records for two species of the genus Unio in order to establish: (1) whether differences between the rivers in water {delta}18O values, reflecting river discharge conditions, are recorded in unionid shells; and (2) to what extent ecological parameters influence the accuracy of bivalve shell {delta}18O values as proxies of seasonal, water oxygen isotope conditions in these rivers. The results show that shells from the two rivers differ significantly in {delta}18O values, reflecting different source waters for these two rivers. The seasonal shell {delta}18O records show truncated sinusoidal patterns with narrow peaks and wide troughs, caused by temperature fractionation and winter growth cessation. Interannual growth rate reconstructions show an ontogenetic growth rate decrease. Growth lines in the shell often, but not always, coincide with winter growth cessations in the {delta}18O record, suggesting that growth cessations in the shell {delta}18O records are a better age estimator than counting internal growth lines. Seasonal predicted and measured {delta}18O values correspond well, supporting the hypothesis that these unionids precipitate their shells in oxygen isotopic equilibrium. This means that (sub-) fossil unionids can be used to reconstruct spring-summer river discharge conditions, such as Meuse low-discharge events caused by droughts and Rhine meltwater-influx events caused by melting of snow in the Alps.
Resumo:
The coadsorption of water with organic molecules under near-ambient pressure and temperature conditions opens up new reaction pathways on model catalyst surfaces that are not accessible in conventional ultrahigh-vacuum surfacescience experiments. The surface chemistry of glycine and alanine at the water-exposed Cu{110} interface was studied in situ using ambient-pressure photoemission and X-ray absorption spectroscopy techniques. At water pressures above 10-5 Torr a significant pressure-dependent decrease in the temperature for dissociative desorption was observed for both amino acids, accompanied by the appearance of a newCN intermediate, which is not observed for lower pressures. The most likely reaction mechanisms involve dehydrogenation induced by O and/or OH surface species resulting from the dissociative adsorption of water. The linear relationship between the inverse decomposition temperature and the logarithm of water pressure enables determination of the activation energy for the surface reaction, between 213 and 232 kJ/mol, and a prediction of the decomposition temperature at the solidliquid interface by extrapolating toward the equilibrium vapor pressure. Such experiments near the equilibrium vapor pressure provide important information about elementary surface processes at the solidliquid interface, which can be retrieved neither under ultrahigh vacuum conditions nor from interfaces immersed in a solution.
Resumo:
Satellite measurements and numerical forecast model reanalysis data are used to compute an updated estimate of the cloud radiative effect on the global multi-annual mean radiative energy budget of the atmosphere and surface. The cloud radiative cooling effect through reflection of shortwave radiation dominates over the longwave heating effect, resulting in a net cooling of the climate system of –21 Wm-2. The shortwave radiative effect of cloud is primarily manifest as a reduction in the solar radiation absorbed at the surface of -53 Wm-2. Clouds impact longwave radiation by heating the moist tropical atmosphere (up to around 40 Wm-2 for global annual means) while enhancing the radiative cooling of the atmosphere over other regions, in particular higher latitudes and sub-tropical marine stratocumulus regimes. While clouds act to cool the climate system during the daytime, the cloud greenhouse effect heats the climate system at night. The influence of cloud radiative effect on determining cloud feedbacks and changes in the water cycle are discussed.