843 resultados para Alternative fuels
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new methodology for tree seedling production (Aquaforest system) based on a continuous floating subirrigation system was developed and tested using creeks with different nutrient levels. Eucalyptus grandis seedlings were produced in water from polluted and clean creeks, and compared to conventional tree nursery production. The growth variables analyzed in the seedling phase were: survival, height, diameter, shoot and root dry weight, leaf area, and root/shoot ratio. Water and substrate were analyzed, as well as leaf nutritional status. Plant survival was 100% in all treatments. Height and diameter were greater in the higher nutrient water treatment. Leaf area and dry weight of plants produced in the higher nutrient water treatment were similar to those of the control. The results showed that polluted water can represent a good nutrient source. The preliminary results show that the Aquaforest system can be a viable alternative for tree seedling production. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Lubricant is responsible for reducing the wear on the friction protect the metal against oxidation, corrosion and dissipates excess heat, making it essential for the balance of a mechanical system, consequently prolonging the useful life of such a system. The origin of lubricating oils is usually mineral being extracted from the petroleum. But the search for a new source of production of lubricants and fuels it is necessary to meet future demands and reduce the possible environmental damage. For this reason, looking alternative means to produce certain products derived from petroleum, such as biodiesel, for example. Returning to the realm of lubricants, also one realizes this need for new raw materials for their production. Vegetable oil is a renewable resource and biodegradable, and its use entails advantages in environmental, social and economic. The development of this project aims to characterize the carnauba oil as a lubricant plant, or biolubricant. To analyze the oil carnauba tests as checking density, flash point, fire point, viscosity, viscosity, acid number, pH, copper corrosion, thermal conductivity and thermal resistivity were developed. In addition, for conducting the wear on the friction and the gradient of the system temperature, the analysis equipment is designed for wear on the friction. Based on these results, it is observed that the oil carnauba show good correlation to its application as biolubricant
Resumo:
After the Protocol of Kyoto and of the ECHO 92 - Rio de Janeiro, the attentions of the world focus to the preservation of the environment and of the maintainable use of the natural resources. People were looking for preserving environment for the future generations. Ever since, solutions are looked for the supply of energy in its more acquaintances forms and the substitution of the use of fossil fuels for the such alternative forms as: Photovoltaics, solar heat systems for water, wind , bio-diesel, etc. and in this context the Company of Engineering of the State of Bahia - Cerb changed a diesel pumping system by an wind one, It´s the first community system of this nature in Bahia. Facing problems with the model, a Cerb involved the academic segment of the Federal Center of Technological Education of Bahia Cefetba looking for a solution. This work intends to demonstrate the possibilities of optimization of the pumping communit system that supply water to approximately 50 people in the place of Romão, municipal district of São Gabriel-Ba. Technical reports were published in AGRENERGD2004-Unicamp SP and Scientific Magazine ETC,Cefetba, 2005. A simulation of the increase of energy is presented for heights of 15 and 20m, considering the eletromecanical balance from the pumping energy to the wind turbine. From the accomplished bibliographical revision, we emphasized the mechanical aspects of the engineering once in UFRN, those studies concentrate on the Department of Mechanical Engineering while, in others eletroelectronic are more emphasized. Finally, documents that we judged important were enclosed for the perfect understanding of this work
Resumo:
O uso de fontes não convencionais para fornecimento de K às plantas tem sido amplamente estudado, mas os efeitos de materiais alternativos na qualidade fisiológica das sementes não são conhecidos. Este estudo teve como objetivo avaliar a qualidade fisiológica de sementes de soja e trigo em função da aplicação fontes de potássio em uma sucessão de culturas. O delineamento experimental foi o de blocos ao acaso com quatro repetições. Os tratamentos constaram de três fontes de K (KCl, rocha alcalina e fonolito moído, com 58%, 11% e 8.42% de K2O, respectivamente) aplicados em quatro doses (0, 25, 50 e 100 kg K2O ha-1). As doses de potássio foram aplicadas na soja e seu efeito residual foi avaliado na cultura do trigo, cultivado em sucessão. Logo após a colheita, as sementes de soja e trigo foram avaliadas pelos testes de teor de água, massa de sementes, germinação, primeira contagem, condutividade elétrica, comprimento de plântulas e massa da matéria seca de plântulas. Plantas de soja adubadas com fontes alternativas para fornecimento de K produzem sementes com maior massa e menor permeabilidade de membranas comparado às com KCl; maior qualidade fisiológica de sementes de soja e massa de sementes de trigo são obtidas com maiores doses de K2O independente da fonte.
Resumo:
The development of new fuels is an important field of scientific and technological activities, since much of the energy consumed in the world is obtained from oil, coal and natural gas, and these sources are limited and not renewable. Recently it has assessed the employment of microemulsions as an alternative for obtaining fuel isotropic between phases originally not miscible. Among many advantages, emphasizes the application of substances that provide the reduction of levels of emissions compared to fossil fuels. Thus, this work was a study of various microemulsified systems, aiming to check the performance of the winsor regions front of the use of surfactants: RENEX 18 → 150, UNITOL L-60 → L-100 and AMIDA 60, together with structure of esters from soybean and castor bean oils. From the results it were chosen four systems to physico-chemical analyzes: System I RENEX 60, Soil bean oil, methylic ester (EMOS) and water; System II RENEX 60/AMIDA 60, EMOS and water; System III RENEX 70, mamona oil methylic ester (EMOM) and water and System IV RENEX 95, EMOM and water. The tests of physico-chemical characterization and study of temperature increase were done with nine points with different compositions in a way to include the interest area (microemulsion W/O). After this study, was conducted a modeling to predict the viscosity, the property is more varied as function of compositions systems changes. The best results were the systems II and IV with a temperature stability above 60°C. The system I had its physico-chemical characterization very similar to a fossil fuel. The system II was the best one due to its corrosivity be stable. In the modeling the four systems had shown good, with an error that varied between 5 and 18%, showing to be possible the viscosity prediction from the composition of the system. The effects the microemulsion and the engine´s performance with the microemulsion were also avaliated. The tests were performed in a cycle-diesel engine. The potency and consumption were analysed. Results show a slight increase the rendiment fuel compared with the conventional as well as a decrease in specific consumption
Resumo:
Os ensaios de largura de trabalho e uniformidade de distribuição são de difícil execução para o agricultor por exigirem equipamentos, recursos e métodos complexos. Portanto, este trabalho teve como objetivo avaliar coletores alternativos para tornar mais acessível a regulagem e a avaliação de distribuidores de fertilizantes sólidos a lanço. Foram utilizados quatro diferentes conjuntos de coletores: i) coletores construídos segundo a norma ISO 5690/1; ii) coletores de polietileno (bandejas plásticas) com tela de sombreamento para evitar o ricochete de material; iii) coletores formados por caixas de leite longa vida, e iv) coletores formados por vasos de polietileno (número 3,5). Também foram utilizados três diferentes distribuidores para as avaliações. Os coletores alternativos apresentaram maior retenção de partículas que os coletores normatizados. A largura efetiva de trabalho obtida para os coeficientes de variação de 12,5; 15; 17,5 e 20% variou entre os coletores nos diferentes percursos. O coletor que mais se assemelhou à norma foram os vasos de polietileno. Constatou-se que a altura dos coletores foi mais importante para sua eficiência do que a sua área de coleta.
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
The industry, over the years, has been working to improve the efficiency of diesel engines. More recently, it was observed the need to reduce pollutant emissions to conform to the stringent environmental regulations. This has attached a great interest to develop researches in order to replace the petroleum-based fuels by several types of less polluting fuels, such as blends of diesel oil with vegetable oil esters and diesel fuel with vegetable oils and alcohol, emulsions, and also microemulsions. The main objective of this work was the development of microemulsion systems using nonionic surfactants that belong to the Nonylphenols ethoxylated group and Lauric ethoxylated alcohol group, ethanol/diesel blends, and diesel/biodiesel blends for use in diesel engines. First, in order to select the microemulsion systems, ternary phase diagrams of the used blends were obtained. The systems were composed by: nonionic surfactants, water as polar phase, and diesel fuel or diesel/biodiesel blends as apolar phase. The microemulsion systems and blends, which represent the studied fuels, were characterized by density, viscosity, cetane number and flash point. It was also evaluated the effect of temperature in the stability of microemulsion systems, the performance of the engine, and the emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons, and smoke for all studied blends. Tests of specific fuel consumption as a function of engine power were accomplished in a cycle diesel engine on a dynamometer bench and the emissions were evaluated using a GreenLine 8000 analyzer. The obtained results showed a slight increase in fuel consumption when microemulsion systems and diesel/biodiesel blends were burned, but it was observed a reduction in the emission of nitrogen oxides, unburned hydrocarbons, smoke index and f sulfur oxides
Resumo:
Discussions about pollution caused by vehicles emission are old and have been developed along the years. The search for cleaner technologies and frequent weather alterations have been inducing industries and government organizations to impose limits much more rigorous to the contaminant content in fuels, which have an direct impact in atmospheric emissions. Nowadays, the quality of fuels, in relation to the sulfur content, is carried out through the process of hydrodesulfurization. Adsorption processes also represent an interesting alternative route to the removal of sulfur content. Both processes are simpler and operate to atmospheric temperatures and pressures. This work studies the synthesis and characterization of aluminophosphate impregnate with zinc, molybdenum or both, and its application in the sulfur removal from the gasoline through the adsorption process, using a pattern gasoline containing isooctane and thiophene. The adsorbents were characterized by x-ray diffraction, differential thermal analysis (DTG), x-ray fluorescence and scanning electron microscopy (SEM). The specific area, volume and pore diameter were determined by BET (Brunauer- Emmet-Teller) and the t-plot method. The sulfur was quantified by elementary analysis using ANTEK 9000 NS. The adsorption process was evaluated as function of the temperature variation and initial sulfur content through the adsorption isotherm and its thermodynamic parameters. The parameters of entropy (ΔS), enthalpy variation (ΔH) and free Gibbs energy (ΔG) were calculated through the graph ln(Kd) versus 1/T. Langmuir, Freundlich and Langmuir-Freundlich models were adjusted to the experimental data, and the last one had presented better results. The thermodynamic tests were accomplished in different temperatures, such as 30, 40 and 50ºC, where it was concluded the adsorption process is spontaneous and exothermic. The kinetic of adsorption was studied by 24 h and it showed that the capability adsorption to the adsorbents studied respect the following order: MoZnPO > MoPO > ZnPO > AlPO. The maximum adsorption capacity was 4.91 mg/g for MoZnPO with an adsorption efficiency of 49%.
Resumo:
The diesel combustion form sulfur oxides that can be discharged into the atmosphere as particulates and primary pollutants, SO2and SO3, causing great damage to the environment and to human health. These products can be transformed into acids in the combustion chamber, causing damage to the engines. The worldwide concern with a clean and healthy environment has led to more restrictive laws and regulations regulating the emission levels of pollutants in the air, establishing sulfur levels increasingly low on fuels. The conventional methods for sulfur removal from diesel are expensive and do not produce a zero-level sulfur fuel. This work aims to develop new methods of removing sulfur from commercial diesel using surfactants and microemulsion systems. Its main purpose is to create new technologies and add economic viability to the process. First, a preliminary study using as extracting agent a Winsor I microemulsion system with dodecyl ammonium chloride (DDACl) and nonyl phenol ethoxylated (RNX95) as surfactant was performed to choose the surfactant. The RNX95 was chosen to be used as surfactant in microemulsioned systems for adsorbent surface modification and as an extracting agent in liquid-liquid extraction. Vermiculite was evaluated as adsorbent. The microemulsion systems applied for vermiculite surface modification were composed by RNX95 (surfactant), n-butanol (cosurfactant), n-hexane (oil phase), and different aqueous phases, including: distilled water (aqueous phase),20ppm CaCl2solution, and 1500ppm CaCl2solution. Batch and column adsorption tests were carried out to estimate the ability of vermiculite to adsorb sulfur from diesel. It was used in the experiments a commercial diesel fuel with 1,233ppm initial sulfur concentration. The batch experiments were performed according to a factorial design (23). Two experimental sets were accomplished: the first one applying 1:2 vermiculite to diesel ratio and the second one using 1:5 vermiculite to diesel ratio. It was evaluated the effects of temperature (25°C and 60°C), concentration of CaCl2in the aqueous phase (20ppm and 1500ppm), and vermiculite granule size (65 and 100 mesh). The experimental response was the ability of vermiculite to adsorb sulfur. The best results for both 1:5 and 1:2 ratios were obtained using 60°C, 1500ppm CaCl2solution, and 65 mesh. The best adsorption capacities for 1:5 ratio and for 1:2 ratio were 4.24 mg sulfur/g adsorbent and 2.87 mg sulfur/g adsorbent, respectively. It was verified that the most significant factor was the concentration of the CaCl2 solution. Liquid-liquid extraction experiments were performed in two and six steps using the same surfactant to diesel ratio. It was obtained 46.8% sulfur removal in two-step experiment and 73.15% in six-step one. An alternative study, for comparison purposes, was made using bentonite and diatomite asadsorbents. The batch experiments were done using microemulsion systems with the same aqueous phases evaluated in vermiculite study and also 20ppm and 1500 ppm BaCl2 solutions. For bentonite, the best adsorption capacity was 7.53mg sulfur/g adsorbent with distilled water as aqueous phase of the microemulsion system and for diatomite the best result was 17.04 mg sulfur/g adsorbent using a 20ppm CaCl2solution. The accomplishment of this study allowed us to conclude that, among the alternatives tested, the adsorption process using adsorbents modified by microemulsion systems was considered the best process for sulfur removal from diesel fuel. The optimization and scale upof the process constitutes a viable alternative to achieve the needs of the market
Resumo:
The ionospheric effect is one of the major errors in GPS data processing over long baselines. As a dispersive medium, it is possible to compute its influence on the GPS signal with the ionosphere-free linear combination of L1 and L2 observables, requiring dual-frequency receivers. In the case of single-frequency receivers, ionospheric effects are either neglected or reduced by using a model. In this paper, an alternative for single-frequency users is proposed. It involves multiresolution analysis (MRA) using a wavelet analysis of the double-difference observations to remove the short- and medium-scale ionosphere variations and disturbances, as well as some minor tropospheric effects. Experiments were carried out over three baseline lengths from 50 to 450 km, and the results provided by the proposed method were better than those from dual-frequency receivers. The horizontal root mean square was of about 0.28 m (1 sigma).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)