913 resultados para Alkaline Oxidation
Resumo:
A stability-indication high performance liquid chromatographic method has been developed for the determination of norfloxacin in tablet dosage forms. Optimum separation was achieved in less than 7 minutes using Eclipse Plus Zorbax C18 Agilent, 150 mm×4.6 mm i.d., 5 μm particle size column. The analyte was resolved by using a mobile phase 5% acetic acid aqueous solution and methanol (80:20, v/v) at a flow rate 1.0 ml/min on an isocratic high performance liquid chromatographic system at a wavelength of 277 nm. Linearity, system suitability, precision, sensitivity, selectivity, specific, and robustness were established by International Conference Harmonization guidelines. For stress studies the drug was subjected to photolysis, oxidation, acid, alkaline and neutral conditions. The analytical conditions and the solvent developed provided good resolution within a short analysis time and economic advantages. The proposed method not required sophisticated and expensive instrumentation.
Resumo:
The doxycycline (DOX) is a broad-spectrum antibiotic used in several countries. This drug is part of the list of medicines to the SUS (Unified Health System), a model of health care in Brazil. This study describes the development and validation of a microbiological assay, applying the turbidimetric method for the determination of DOX, as well as the evaluation of the ability of the method in determining the stability of DOX in tablets against acidic and basic hydrolysis, photolytic and oxidative degradations, using Escherichia coli ATCC 10536 as micro-organism test and 3×3 parallel line assay design, with nine tubes for each assay, as recommended by the Brazilian Pharmacopoeia. The developed and validated method showed excellent results of linearity, selectivity, precision, accuracy and robustness. The assay is based on the inhibitory effect of DOX using Escherichia coli ATCC 10536. The results of the assay were treated by analysis of variance and were found to be linear (r= 0.9986) in the range from 4.0 to 9.0μg/mL, precise (repeatability R.S.D.= 0.99 and intermediate precision was confirmed by statistical analysis the mean values obtained from analysis by different analysts) and exact (97.73%). DOX solution exposed to direct UV light, alkaline and acid hydrolysis and hydrogen peroxide causing oxidation were used to evaluate the specificity of the bioassay. Comparison of bioassay and liquid chromatography showed differences in results between methodologies. The results showed that the bioassay is valid, simple and useful alternative methodology for DOX determination in routine quality control.
Resumo:
Flucloxacillin sodium (FLU) is a semi-synthetic penicillin active against many gram-positive bacteria such as streptococci and penicilinase-producing staphylococci, including methicillin-susceptible S. aureus. This study describes the development and validation of a microbiological assay, applying the diffusion agar method for the determination of FLU, as well as the evaluation of the ability of the method in determining the stability of FLU in capsules against acidic and basic hydrolysis, photolytic and oxidative degradations, using S. aureus ATCC 25923 as micro-organism test and 3 x 3 parallel line assay design (three doses of the standard and three doses of the sample in each plate), with six plates for each assay, according to the Brazilian Pharmacopoeia. The validation method showed good results including linearity, precision, accuracy, robustness and selectivity. The assay is based on the inhibitory effect of FLU using Staphylococcus aureus ATCC 25923. The results of the assay were treated by analysis of variance (ANOVA) and were found to be linear (r = 0.9997) in the range from 1.5 to 6.0 μg/mL, precise (repeatability: R.S.D. = 1.63 and intermediate precision: R.S.D. = 1.64) and accurate (98.96%). FLU solution (from the capsules) exposed to direct UVC light (254 nm), alkaline and acid hydrolysis and hydrogen peroxide causing oxidation were used to evaluate the specificity of the bioassay. Comparison of bioassay and liquid chromatography by ANOVA showed no difference between methodologies. The results demonstrated the validity of the proposed bioassay, which is a simple and useful alternative methodology for FLU determination in routine quality control.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aims: Hypochlorous (HOCl) and hypobromous (HOBr) acids are among the most powerful oxidants produced by the innate immune cells. Albumin is the predominant protein in most body fluids and is considered the most important antioxidant of blood plasma. Study Design: Oxidation of bovine albumin (BSA) and study of its structural and functional alterations. Place and Duration of Study: Faculty of Science and Faculty of Pharmaceutical Science, University of the State of Sao Paulo UNESP, between June and December 2012. Methodology: BSA was oxidized with excess of HOCl or HOBr and its structural and functional alterations were analyzed by spectroscopic techniques as UV-Vis absorption, intrinsic and synchronous fluorescence, fluorescence quenching, Rayleigh scattering and circular dichroism. Results: Both oxidants were able to deplete the intrinsic fluorescence of BSA, but HOBr was more effective than HOCl. The alterations in the synchronous fluorescence, UV-Vis absorption, and the appearance of a fluorescence band centered at 450 nm confirmed the difference between the oxidants. The oxidation did not induce aggregation of BSA as measured by Rayleigh scattering. The far-UV circular dichroism spectra showed a loss in the helical content and the near-UV-circular dichroism showed an alteration in the tertiary structure; HOBr was the more effective of the oxidants in this case. However, the oxidations did not induce significant alterations in the binding capacity of BSA, which was evaluated using hydrophobic (norfloxacin) and hydrophilic (ascorbic acid) drugs. Conclusion: These results suggest that, although highly susceptible to oxidation, the alterations did not inhibit BSA’s physiological function as a transport protein.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fuel cells powered directly with ethanol (Direct Ethanol Fuel Cell-DEFC) are very attractive for the possibility of using a renewable fuel in the generation of clean energy. However, it is still necessary to deepen the understanding of catalytic processes and their dependence on the catalytic properties. This work proposes to study the catalytic activity of ethanol oxidation in an alkaline medium of Pd nanoparticles supported in carbon oxide hybrids using various transition metal oxides (MoO3, TiO2, WO3 and ZrO2). The materials prepared were characterized by techniques such as X-ray diffraction, transmission electron microscopy (TEM) and X-ray dispersive spectroscopy (EDX) to verify the structure, the distribution of particles in the supports and the presence of Pd on particles oxide. Experiments of X-rays absorption spectroscopy were carried out using soft X-rays (SXS) to evaluate the changes in the electronic properties of the Pd particles caused by interactions with different oxides. Measurements of cyclic voltammetry and potential sweeps of adsorbed CO oxidation allowed evaluating general aspects of the catalysts' electrochemical behavior and determining the electrochemically active area thereof. The catalytic performances of ethanol oxidation in alkaline medium were evaluated by electrochemical techniques (potential scan and chronoamperometry), and showed an improvement in activity with the addition of oxides in material containing only carbon, which was most pronounced for the catalyst containing TiO2. This improvement was predominantly associated with the electronic effects caused by the interaction of Pd on the support, causing a vacancy in the 4d band of Pd which, in turn, produces variations in adsorption energies of the species...
Resumo:
Fuel cells powered directly with ethanol (Direct Ethanol Fuel Cell-DEFC) are very attractive for the possibility of using a renewable fuel in the generation of clean energy. However, it is still necessary to deepen the understanding of catalytic processes and their dependence on the catalytic properties. This work proposes to study the catalytic activity of ethanol oxidation in an alkaline medium of Pd nanoparticles supported in carbon oxide hybrids using various transition metal oxides (MoO3, TiO2, WO3 and ZrO2). The materials prepared were characterized by techniques such as X-ray diffraction, transmission electron microscopy (TEM) and X-ray dispersive spectroscopy (EDX) to verify the structure, the distribution of particles in the supports and the presence of Pd on particles oxide. Experiments of X-rays absorption spectroscopy were carried out using soft X-rays (SXS) to evaluate the changes in the electronic properties of the Pd particles caused by interactions with different oxides. Measurements of cyclic voltammetry and potential sweeps of adsorbed CO oxidation allowed evaluating general aspects of the catalysts' electrochemical behavior and determining the electrochemically active area thereof. The catalytic performances of ethanol oxidation in alkaline medium were evaluated by electrochemical techniques (potential scan and chronoamperometry), and showed an improvement in activity with the addition of oxides in material containing only carbon, which was most pronounced for the catalyst containing TiO2. This improvement was predominantly associated with the electronic effects caused by the interaction of Pd on the support, causing a vacancy in the 4d band of Pd which, in turn, produces variations in adsorption energies of the species...
Resumo:
Three nanostructured platinum-niobium supported on Vulcan XC-72R carbon black materials were prepared as catalysts for the ethanol electroxidation: (i) deposition of platinum and niobium on Vulcan XC-72R carbon black, (ii) platinum decorated on a mixture of commercial amorphous Nb2O5/carbon black, and (iii) the same than ii but using crystalline Nb2O5, by reduction of the precursors with sodium borohydride in ethanol. All the catalysts showed platinum crystal sizes in the range of 3-4 nm, with no or little modification of the lattice parameter. The analyses of the electronic structure from the XANES region of the XAS spectra displayed some interactions between platinum and niobium, despite the niobium was primarily in the form of pentoxide in all the catalysts. CO stripping exhibited a promising low onset potential and a large current density, especially in the case of the deposited catalyst. Ethanol electroxidation experiments revealed that the Pt-Nb(2)O(5)crystalline/C generated the largest current. However it was not effective to completely oxidize ethanol, leading to acetic acid as the main product. In this sense, the highest efficiency for the complete oxidation of ethanol was obtained for the deposited catalyst. These results were interpreted in terms of the physico-chemical characteristic displayed by the different catalysts. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.040210jes] All rights reserved.
Resumo:
The stability of the Glossoscolex paulistus hemoglobin (HbGp), in two iron oxidation states (and three forms), as monitored by optical absorption, fluorescence emission and circular dichroism (CD) spectroscopies, in the presence of the chaotropic agent urea, is studied. HbGp oligomeric dissociation, denaturation and iron oxidation are observed. CD data show that the cyanomet-HbGp is more stable than the oxy-form. Oxy- and cyanomet-HbGp show good fits on the basis of a two state model with critical urea concentrations at 220-222 nm of 5.1 +/- 0.2 and 6.1 +/- 0.1 mol/L, respectively. The three-state model was able to reveal a subtle second transition at lower urea concentration (1.0-2.0 mol/L) associated to partial oligomeric dissociation. The intermediate state for oxy- and cyanomet-HbGp is very similar to the native state. For met-HbGp, a different equilibrium, in the presence of urea, is observed. A sharp transition at 1.95 +/- 0.05 mol/L of denaturant is observed, associated to oligomeric dissociation and hemichrome formation. In this case, analysis by a three-state model reveals the great similarity between the intermediate and the unfolded states. Analysis of spectroscopic data, by two-state and three-state models, reveals consistency of obtained thermodynamic parameters for HbGp urea denaturation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Catalysts containing mixtures of NiO, MgO and ZrO2 were synthesized by the polymerization method. They were characterized by X-ray diffraction (XRD), physisorption of N-2 (BET), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES), and then tested in the partial oxidation of methane (POM) in the presence of air (2CH(4):1O(2)) at 750 degrees C for 6 h. Among the ternary oxides, the catalyst with 40 mol% MgO showed the highest conversion rates in the catalytic processes, but also the highest carbon deposition values (48 mmol h (1)). The greater the amount of NiO-MgO solid solution formed, the higher was the conversion rate of reactants (CH4), peaking at 40 mol% of MgO. Catalysts with lower Ni content on the surface achieved a high rate of CH4 conversion into synthesis gas (H-2 + CO). The formation of more NiO-MgO solid solution seemed to inhibit the deactivation of Ni degrees during reaction. The values of the H-2/CO product ratio were generally found to be slightly lower than stoichiometric. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The thiadiazolylurea derivative tebuthiuron (TBH) is commonly used as an herbicide even though it is highly toxic to humans. While various processes have been proposed for the removal of organic contaminants of this type from wastewater, electrochemical degradation has shown particular promise. The aim of the present study was to investigate the electrochemical degradation of TBH using anodes comprising boron-doped (5000 and 30000 ppm) diamond (BDD) films deposited onto Ti substrates operated at current densities in the range 10-200 mA cm(-2). Both anodes removed TBH following a similar pseudo first-order reaction kinetics with k(ap)p close to 3.2 x 10(-2) min(-1). The maximum mineralization efficiency obtained was 80%. High-pressure liquid chromatography with UV-VIS detection established that both anodes degraded TBH via similar intermediates. Ion chromatography revealed that increasing concentrations of nitrate ions (up to 0.9 ppm) were formed with increasing current density, while the formation of nitrite ions was observed with both anodes at current densities >= 150 mA cm(-2). The BDD film prepared at the lower doping level (5000 ppm) was more efficient in degrading TBH than its more highly doped counterpart. This unexpected finding may be explained in terms of the quantity of impurities incorporated into the diamond lattice during chemical vapor deposition. (C) 2012 Elsevier Ltd. All rights reserved.