1000 resultados para Aleph system
Resumo:
A morphometric study focusing on some features of the reproductive system of Schistosoma mansoni adult worms was performed, aiming to complete previously reported data concerning the effects of undernourishment of the host on the parasites. Male worms were significantly affected (p<0.05) regarding the testicular lobes.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Clinical involvement of the nervous system in visceral larva migrans due to Toxocara is rare, although in experimental animals the larvae frequently migrate to the brain. A review of the literature from the early 50's to date found 29 cases of brain involvement in toxocariasis. In 20 cases, various clinical and laboratory manifestations of eosinophilic meningitis, encephalitis, myelitis or radiculopathy were reported. We report two children with neurological manifestations, in which there was cerebrospinal fluid pleocytosis with marked eosinophilia and a positive serology for Toxocara both in serum and CSF. Serology for Schistosoma mansoni, Cysticercus cellulosae, Toxoplasma and cytomegalovirus were negative in CSF, that was sterile in both cases. Improvement of signs and symptoms after specific treatment (albendazole or thiabendazole) was observed in the two cases. A summary of data described in the 25 cases previously reported is presented and we conclude that in cases of encephalitis and myelitis with cerebrospinal fluid pleocytosis and eosinophilia, parasitic infection of the central nervous system should be suspected and serology should be performed to establish the correct diagnosis and treatment.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para a obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Complex problems of globalized society challenge its adaptive capacity. However, it is precisely the nature of these human induced problems that provide enough evidence to show that adaptability may not be on a resilient path. This thesis explores the ambiguity of the idea of adaptation (and its practice) and illustrates the ways in which adaptability contributes to resilience of social ecological systems. The thesis combines a case study and grounded theory approach and develops an analytical framework to study adaptability in resource users’ organizations: from what it depends on and what the key challenges are for resource management and system resilience. It does so for the specific case of fish producers’ organizations (POs) in Portugal. The findings suggest that while ecological and market context, including the type of crisis, may influence the character of fishers’ adaptation within POs (i.e. anticipatory, maladaptive and reactively adaptive), it does not determine it. Instead, it makes agency even more crucial (i.e. leadership, trust and agent’s perceptions in terms of their impact on fishers’ motivation to learn from each other). In sum, it was found that internal adaptation can improve POs’ contribution to fishery management and resilience, but it is not a panacea and may, in some cases, increase system vulnerability to change. Continuous maladaptation of some Portuguese POs points at a basic institutional problem (fish market regime), which clearly reduces fisheries resilience as it promotes overfishing. However, structural change may not be sufficient to address other barriers to Portuguese fishers’ (PO members) adaptability, such as history (collective memory) and associated problematic self-perceptions. The agency (people involved in structures and practices) also needs to change. What and how institutional change and agency change build on one another (e.g. comparison of fisheries governance in Portugal and other EU countries) is a topic to be explored in further research.
Resumo:
Nowadays, several sensors and mechanisms are available to estimate a mobile robot trajectory and location with respect to its surroundings. Usually absolute positioning mechanisms are the most accurate, but they also are the most expensive ones, and require pre installed equipment in the environment. Therefore, a system capable of measuring its motion and location within the environment (relative positioning) has been a research goal since the beginning of autonomous vehicles. With the increasing of the computational performance, computer vision has become faster and, therefore, became possible to incorporate it in a mobile robot. In visual odometry feature based approaches, the model estimation requires absence of feature association outliers for an accurate motion. Outliers rejection is a delicate process considering there is always a trade-off between speed and reliability of the system. This dissertation proposes an indoor 2D position system using Visual Odometry. The mobile robot has a camera pointed to the ceiling, for image analysis. As requirements, the ceiling and the oor (where the robot moves) must be planes. In the literature, RANSAC is a widely used method for outlier rejection. However, it might be slow in critical circumstances. Therefore, it is proposed a new algorithm that accelerates RANSAC, maintaining its reliability. The algorithm, called FMBF, consists on comparing image texture patterns between pictures, preserving the most similar ones. There are several types of comparisons, with different computational cost and reliability. FMBF manages those comparisons in order to optimize the trade-off between speed and reliability.
Resumo:
The processes of mobilization of land for infrastructures of public and private domain are developed according to proper legal frameworks and systematically confronted with the impoverished national situation as regards the cadastral identification and regularization, which leads to big inefficiencies, sometimes with very negative impact to the overall effectiveness. This project report describes Ferbritas Cadastre Information System (FBSIC) project and tools, which in conjunction with other applications, allow managing the entire life-cycle of Land Acquisition and Cadastre, including support to field activities with the integration of information collected in the field, the development of multi-criteria analysis information, monitoring all information in the exploration stage, and the automated generation of outputs. The benefits are evident at the level of operational efficiency, including tools that enable process integration and standardization of procedures, facilitate analysis and quality control and maximize performance in the acquisition, maintenance and management of registration information and expropriation (expropriation projects). Therefore, the implemented system achieves levels of robustness, comprehensiveness, openness, scalability and reliability suitable for a structural platform. The resultant solution, FBSIC, is a fit-for-purpose cadastre information system rooted in the field of railway infrastructures. FBSIC integrating nature of allows: to accomplish present needs and scale to meet future services; to collect, maintain, manage and share all information in one common platform, and transform it into knowledge; to relate with other platforms; to increase accuracy and productivity of business processes related with land property management.
Resumo:
Phenolic acids are aromatic secondary plant metabolites, widely spread throughout the plant kingdom. Due to their biological and pharmacological properties, they have been playing an important role in phytotherapy and consequently techniques for their separation and purification are in need. This thesis aims at exploring new sustainable separation processes based on ionic liquids (ILs) in the extraction of biologically active phenolic acids. For that purpose, three phenolic acids with similar chemical structures were selected: cinnamic acid, p-coumaric acid and caffeic acid. In the last years, it has been shown that ionic liquids-based aqueous biphasic systems (ABSs) are valid alternatives for the extraction, recovery and purification of biomolecules when compared to conventional ABS or extractions carried out with organic solvents. In particular, cholinium-based ILs represent a clear step towards a greener chemistry, while providing means for the implementation of efficient techniques for the separation and purification of biomolecules. In this work, ABSs were implemented using cholinium carboxylate ILs using either high charge density inorganic salt (K3PO4) or polyethylene glycol (PEG) to promote the phase separation of aqueous solutions containing three different phenolic acids. These systems allow for the evaluation of effect of chemical structure of the anion on the extraction efficiency. Only one imidazolium-based IL was used in order to establish the effect of the cation chemical structure. The selective extraction of one single acid was also researched. Overall, it was observed that phenolic acids display very complex behaviours in aqueous solutions, from dimerization to polymerization and also hetero-association are quite frequent phenomena, depending on the pH conditions. These phenomena greatly hinder the correct quantification of these acids in solution.
Resumo:
Fundação para a Ciência e Tecnologia - EXPL/BBB-BEP/0274/2012
Resumo:
Despite the recent progresses in robotics, autonomous robots still have too many limitations to reliably help people with disabilities. On the other hand, animals, and especially dogs, have already demonstrated great skills in assisting people in many daily situations. However, dogs also have their own set of limitations. For example, they need to rest periodically, to be healthy (physically and psychologically), and it is difficult to control them remotely. This project aims to “augment” the Assistance dog, by developing a system that compensates some of the dog weaknesses through a robotic device mounted on the dog harness. This specific study, involved in the COCHISE project, focuses on the development of a system for the monitoring of dogs activity and physiological parameters.
Resumo:
Digital Microfluidics (DMF) is a second generation technique, derived from the conventional microfluidics that instead of using continuous liquid fluxes, it uses only individual droplets driven by external electric signals. In this thesis a new DMF control/sensing system for visualization, droplet control (movement, dispensing, merging and splitting) and real time impedance measurement have been developed. The software for the proposed system was implemented in MATLAB with a graphical user interface. An Arduino was used as control board and dedicated circuits for voltage switching and contacts were designed and implemented in printed circuit boards. A high resolution camera was integrated for visualization. In our new approach, the DMF chips are driven by a dual-tone signal where the sum of two independent ac signals (one for droplet operations and the other for impedance sensing) is applied to the electrodes, and afterwards independently evaluated by a lock-in amplifier. With this new approach we were able to choose the appropriated amplitudes and frequencies for the different proposes (actuation and sensing). The measurements made were used to evaluate the real time droplet impedance enabling the knowledge of its position and velocity. This new approach opens new possibilities for impedance sensing and feedback control in DMF devices.