926 resultados para Air showers
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
BackgroundThe success of epidural anaesthesia depends on correct identification of the epidural space. For several decades, the decision of whether to use air or physiological saline during the loss of resistance technique for identification of the epidural space has been governed by the personal experience of the anaesthesiologist. Epidural block remains one of the main regional anaesthesia techniques. It is used for surgical anaesthesia, obstetrical analgesia, postoperative analgesia and treatment of chronic pain and as a complement to general anaesthesia. The sensation felt by the anaesthesiologist from the syringe plunger with loss of resistance is different when air is compared with saline (fluid). Frequently fluid allows a rapid change from resistance to non-resistance and increased movement of the plunger. However, the ideal technique for identification of the epidural space remains unclear.ObjectivesTo evaluate the efficacy and safety of both air and saline in the loss of resistance technique for identification of the epidural space.To evaluate complications related to the air or saline injected.Search methodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2013, Issue 9), MEDLINE, EMBASE and the Latin American and Caribbean Health Science Information Database (LILACS) (from inception to September 2013). We applied no language restrictions. The date of the most recent search was 7 September 2013.Selection criteriaWe included randomized controlled trials (RCTs) and quasi-randomized controlled trials (quasi-RCTs) on air and saline in the loss of resistance technique for identification of the epidural space.Data collection and analysisTwo review authors independently assessed trial quality and extracted data.Main resultsWe included in the review seven studies with a total of 852 participants. The methodological quality of the included studies was generally ranked as showing low risk of bias inmost domains, with the exception of one study, which did not mask participants. We were able to include data from 838 participants in the meta-analysis. We found no statistically significant differences between participants receiving air and those given saline in any of the outcomes evaluated: inability to locate the epidural space (three trials, 619 participants) (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.33 to 2.31, low-quality evidence); accidental intravascular catheter placement (two trials, 223 participants) (RR 0.90, 95% CI 0.33 to 2.45, low-quality evidence); accidental subarachnoid catheter placement (four trials, 682 participants) (RR 2.95, 95% CI 0.12 to 71.90, low-quality evidence); combined spinal epidural failure (two trials, 400 participants) (RR 0.98, 95% CI 0.44 to 2.18, low-quality evidence); unblocked segments (five studies, 423 participants) (RR 1.66, 95% CI 0.72 to 3.85); and pain measured by VAS (two studies, 395 participants) (mean difference (MD) -0.09, 95% CI -0.37 to 0.18). With regard to adverse effects, we found no statistically significant differences between participants receiving air and those given saline in the occurrence of paraesthesias (three trials, 572 participants) (RR 0.89, 95% CI 0.69 to 1.15); difficulty in advancing the catheter (two trials, 227 participants) (RR 0.91, 95% CI 0.32 to 2.56); catheter replacement (two trials, 501 participants) (RR 0.69, 95% CI 0.26 to 1.83); and postdural puncture headache (one trial, 110 participants) (RR 0.83, 95% CI 0.12 to 5.71).Authors' conclusionsLow-quality evidence shows that results do not differ between air and saline in terms of the loss of resistance technique for identification of the epidural space and reduction of complications. Applicability might be compromised, as most of the results described in this review were obtained from parturient patients. This review underlines the need to conduct well-designed trials in this field.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this in vitro study was to evaluate the effect of air-abrasion/zirconia sintering order on the yttria partially stabilized tetragonal zirconia polycrystal (Y-TZP) surface characterization (roughness, morphology, and phase transformation), flexural strength (FS), and shear bond strength (SBS) to a resin cement. Y-TZP specimens were air abraded with 50-μm Al2O3 particles after (AS), before (BS), or before and after zirconia sintering (BAS). For roughness (Ra), 30 block specimens (12×12×3.0 mm; n=10) had their surfaces analyzed by a profilometer. Next, on the air-abraded surfaces of these specimens, composite resin discs (n=30) were bonded with RelyX ARC. The bonded specimens were stored for 24 hours in distilled water at 37°C before shear testing. Failure mode was determined with a stereomicroscope (20×). The surface morphology (n=2) was evaluated by SEM (500×). For the four-point flexural strength test (EMIC DL2000), 39 bar-shaped specimens (20×4.0×1.2 mm; n=13) were air abraded according to the three conditions proposed, and an additional group (nonabraded) was evaluated (n=13). The quantitative analysis of phase transformation (n=1) was completed with Rietveld refinement with X-ray diffraction data. Ra (μm) and SBS (MPa) data were analyzed by one-way analysis of variance (ANOVA) and the Tukey test (α=0.05). Pearson correlation analysis was used to determine if there was a correlation between roughness and SBS. For FS (MPa) data, one-way ANOVA and the Dunnett C-test (α=0.05) were used. The air-abrasion/zirconia sintering order influenced significantly (p<0.001) Ra, SBS, and FS. The BS and AS groups presented the highest (1.3 μm) and the lowest (0.7 μm) Ra. The highest SBS (7.0 MPa) was exhibited by the BAS group, followed by the AS group (5.4 MPa) and finally by the BS group (2.6 MPa). All groups presented 100% adhesive failure. A weak correlation (r=−0.45, p<0.05) was found between roughness and SBS. The air-abrasion/zirconia sintering order provided differences in the surface morphology. The nonabraded (926.8 MPa) and BS (816.3 MPa) groups exhibited statistically similar FS values but lower values than the AS (1249.1 MPa) and BAS (1181.4 MPa) groups, with no significant difference between them. The nonabraded, AS, BS, and BAS groups exhibited, respectively, percentages of monoclinic phase of 0.0 wt%, 12.2 wt%, 0.0 wt%, and 8.6 wt%. The rougher surface provided by the air-abrasion before zirconia sintering may have impaired the bonding with the resin cement. The morphological patterns were consistent with the surface roughness. Considering the short-term SBS and FS, the BAS group exhibited the best performance. Air abrasion, regardless of its performance order, provides tetragonal to monoclinic transformation, while sintering tends to zero the monoclinic phase content.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The African catfish (Clarias gariepinus) is a teleost with bimodal respiration that utilizes a paired suprabranchial chamber located in the gill cavity as an air-breathing organ. Like all air-breathing fishes studied to date, the African catfish exhibits pronounced changes in heart rate (f H) that are associated with air-breathing events. We acquired f H, gill-breathing frequency (f G) and air-breathing frequency (f AB) in situations that require or do not require air breathing (during normoxia and hypoxia), and we assessed the autonomic control of post-air-breathing tachycardia using an infusion of the β-adrenergic antagonist propranolol and the muscarinic cholinergic antagonist atropine. During normoxia, C. gariepinus presented low f AB (1.85 ± 0.73 AB h−1) and a constant f G (43.16 ± 1.74 breaths min−1). During non-critical hypoxia (PO2 = 60 mmHg), f AB in the African catfish increased to 5.42 ± 1.19 AB h−1 and f G decreased to 39.12 ± 1.58 breaths min−1. During critical hypoxia (PO2 = 20 mmHg), f AB increased to 7.4 ± 1.39 AB h−1 and f G decreased to 34.97 ± 1.78 breaths min−1. These results were expected for a facultative air breather. Each air breath (AB) was followed by a brief but significant tachycardia, which in the critical hypoxia trials, reached a maximum of 143 % of the pre-AB f H values of untreated animals. Pharmacological blockade allowed the calculation of cardiac autonomic tones, which showed that post-AB tachycardia is predominantly regulated by the parasympathetic subdivision of the autonomic nervous system.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The resistive-type superconducting fault current limiters (RSFCL) prototypes using YBCO-coated conductors have shown current limitation for medium voltage class applications for acting time up to 80 ms. By connecting an air-core reactor in parallel with the RSFCL, thus making an hybrid current limiter, one can extend the acting time for up to 1 s. In this work, we report the performance of a hybrid current limiter subjected to an AC peak fault current of 2 kA during 1 s for which within the first 80 ms the SFCL limits the current concurrently with the air-core reactor, and for the remaining 920 ms, only the air-core reactor limits the current. In order to evaluate the actual conditions for subsequent reconnection of RSFCL to the power grid, the hybrid fault current limiter was tested varying the time interval for recovery from 900 ms and 1.2 s, followed again by the concurrent operation of the hybrid limiter during 1 s (SFCL during 80 ms). From this evaluation test, the recovery time can be measured and compared using the voltage peak generated in superconducting module from the first and second fault test. The recovery time was also determined through the pulsed current method (PCM) on short-length sample test. The results showed that the fault current was limited from 1.9 kA down to 514 A after 1 cycle of 60 Hz frequency, with recovery time lower than 1.2 s for two subsequent fault current tests.
Resumo:
Estimation of the lower flammability limits of C-H compounds at 25 degrees C and 1 atm; at moderate temperatures and in presence of diluent was the objective of this study. A set of 120 degrees C H compounds was divided into a correlation set and a prediction set of 60 compounds each. The absolute average relative error for the total set was 7.89%; for the correlation set, it was 6.09%; and for the prediction set it was 9.68%. However, it was shown that by considering different sources of experimental data the values were reduced to 6.5% for the prediction set and to 6.29% for the total set. The method showed consistency with Le Chatelier's law for binary mixtures of C H compounds. When tested for a temperature range from 5 degrees C to 100 degrees C , the absolute average relative errors were 2.41% for methane; 4.78% for propane; 0.29% for iso-butane and 3.86% for propylene. When nitrogen was added, the absolute average relative errors were 2.48% for methane; 5.13% for propane; 0.11% for iso-butane and 0.15% for propylene. When carbon dioxide was added, the absolute relative errors were 1.80% for methane; 5.38% for propane; 0.86% for iso-butane and 1.06% for propylene. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Analysis of oxy-fuel combustion as an alternative to combustion with air in metal reheating furnaces
Resumo:
Using oxygen instead of air in a burning process is at present being widely discussed as an option to reduce CO2 emissions. One of the possibilities is to maintain the combustion reaction at the same energy release level as burning with air, which reduces fuel consumption and the emission rates of CO2. A thermal simulation was made for metal reheating furnaces, which operate at a temperature in the range of 1150-1250 degrees C, using natural gas with a 5% excess of oxygen, maintaining fixed values for pressure and combustion temperature. The theoretical results show that it is possible to reduce the consumption of fuel, and this reduction depends on the amount of heat that can be recovered during the air pre-heating process. The analysis was further conducted by considering the 2012 costs of natural gas and oxygen in Brazil. The use of oxygen showed to be economically viable for large furnaces that operate with conventional heat recovering systems (those that provide pre-heated air at temperatures near 400 degrees C). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST) of 7-to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb(R) broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 degrees C) to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05) from the values obtained by the equations. MST values significantly increased (p < 0.05) when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.