971 resultados para Air Services Network
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
Power systems operation in a liberalized environment requires that market players have access to adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper deals with ancillary services negotiation in electricity markets. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of ancillary services using two different methods (Linear Programming and Genetic Algorithm approaches) is included in the paper.
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.
Resumo:
Will the existing means in Radiotherapy respond to the needs of the potential user population in 2014 for Lisbon and Santarém districts? Number of treatment units? Number of Radiotherapy Technologists? Temporal variations of the dimension and age structure of the populations: Coastal areas/Interior areas, Urban areas/Rural areas. Temporal variations in the incidence of several types of cancer. Overall objectives: evaluate of the necessities of Radiotherapy for Lisbon and Santarém districts in 2014 and elaboration of proposals that aim the access/use for the potential user population.
Resumo:
OBJECTIVE: Myocardial infarction is an acute and severe cardiovascular disease that generally leads to patient admissions to intensive care units and few cases are initially admitted to infirmaries. The objective of the study was to assess whether estimates of air pollution effects on myocardial infarction morbidity are modified by the source of health information. METHODS: The study was carried out in hospitals of the Brazilian Health System in the city of São Paulo, Southern Brazil. A time series study (1998-1999) was performed using two outcomes: infarction admissions to infirmaries and to intensive care units, both for people older than 64 years of age. Generalized linear models controlling for seasonality (long and short-term trends) and weather were used. The eight-day cumulative effects of air pollutants were assessed using third degree polynomial distributed lag models. RESULTS: Almost 70% of daily hospital admissions due to myocardial infarction were to infirmaries. Despite that, the effects of air pollutants on infarction were higher for intensive care units admissions. All pollutants were positively associated with the study outcomes but SO2 presented the strongest statistically significant association. An interquartile range increase on SO2 concentration was associated with increases of 13% (95% CI: 6-19) and 8% (95% CI: 2-13) of intensive care units and infirmary infarction admissions, respectively. CONCLUSIONS: It may be assumed there is a misclassification of myocardial infarction admissions to infirmaries leading to overestimation. Also, despite the absolute number of events, admissions to intensive care units data provides a more adequate estimate of the magnitude of air pollution effects on infarction admissions.
Resumo:
Dissertação de Mestrado, Ciências Económicas e Empresariais, 15 de Janeiro 2014, Universidade dos Açores.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
OBJECTIVE: To assess the lag structure between air pollution exposure and elderly cardiovascular diseases hospital admissions, by gender. METHODS: Health data of people aged 64 years or older was stratified by gender in São Paulo city, Southeastern Brazil, from 1996 to 2001. Daily levels of air pollutants (CO, PM10, O3, NO2, and SO2) , minimum temperature, and relative humidity were also analyzed. It were fitted generalized additive Poisson regressions and used constrained distributed lag models adjusted for long time trend, weekdays, weather and holidays to assess the lagged effects of air pollutants on hospital admissions up to 20 days after exposure. RESULTS: Interquartile range increases in PM10 (26.21 mug/m³) and SO2 (10.73 mug/m³) were associated with 3.17% (95% CI: 2.09-4.25) increase in congestive heart failure and 0.89% (95% CI: 0.18-1.61) increase in total cardiovascular diseases at lag 0, respectively. Effects were higher among female group for most of the analyzed outcomes. Effects of air pollutants for different outcomes and gender groups were predominately acute and some "harvesting" were found. CONLUSIONS: The results show that cardiovascular diseases in São Paulo are strongly affected by air pollution.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Informática
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores