998 resultados para Agro-industrial substrate
Resumo:
Efficient analytical methods for the quantification of plant-available Zn contained in mineral fertilizers and industrial by-products are fundamental for the control and marketing of these inputs. In this sense, there are some doubts on the part of the scientific community as well as of the fertilizer production sector, whether the extractor requested by the government (Normative Instruction No. 28, called 2nd extractor), which is citric acid 2 % (2 % CA) (Brasil, 2007b), is effective in predicting the plant availability of Zn via mineral fertilizers and about the agronomic significance of the required minimal solubility of 60 % compared to the total content (HCl) (Brasil, 2007a). The purpose of this study was to evaluate the alternative extractors DTPA, EDTA, neutral ammonium citrate (NAC), buffer solution pH 6.0, 10 % HCl, 10 % sulfuric acid, 1 % acetic acid, water, and hot water to quantify the contents of Zn available for maize and compare them with indices of agronomic efficiency of fertilizers and industrial by-products when applied to dystrophic Clayey Red Latosol and Dystrophic Alic Red Yellow Latosol with medium texture. The rate of Zn applied to the soil was 5 mg kg-1, using the sources zinc sulfate, commercial granular zinc, ash and galvanic sludge, ash and two brass slags. Most Zn was extracted from the sources by DTPA, 10 % HCl, NAC, 1% acetic acid, and 10 % sulfuric acid. Recovery by the extractors 2 % CA, EDTA, water, and hot water was low. The agronomic efficiency index was found to be high when using galvanic sludge (238 %) and commercial granular zinc (142 %) and lower with brass slag I and II (67 and 27 %, respectively). The sources galvanizing ash and brass ash showed solubility lower than 60 % in 2 % CA, despite agronomic efficiency indices of 78 and 125 %, respectively. The low agronomic efficiency index of industrial by-products such as brass slag I and galvanizing ash can be compensated by higher doses, provided there is no restriction, as well as for all other sources, in terms of contaminant levels of arsenic, cadmium, chromium, lead, and mercury as required by law (Normative Instruction No 27/2006). The implementation of 2nd extractor 2 % CA and the requirement of minimum solubility for industrial by-products could restrict the use of alternative sources as potential Zn sources for plants.
Resumo:
We present a study about the influence of substrate temperature on deposition rate of hydrogenated amorphous silicon thin films prepared by rf glow discharge decomposition of pure silane gas in a capacitively coupled plasma reactor. Two different behaviors are observed depending on deposition pressure conditions. At high pressure (30 Pa) the influence of substrate temperature on deposition rate is mainly through a modification of gas density, in such a way that the substrate temperature of deposition rate is similar to pressure dependence at constant temperature. On the contrary, at low pressure (3 Pa), a gas density effect cannot account for the observed increase of deposition rate as substrate temperature rises above 450 K with an activation energy of 1.1 kcal/mole. In accordance with laser‐induced fluorescence measurements reported in the literature, this rise has been ascribed to an increase of secondary electron emission from the growing film surface as a result of molecular hydrogen desorption.
Resumo:
O resíduo industrial lama de cal, originado da produção de papel kraft branqueada de eucalipto, apresenta em sua composição quantidade considerável de cálcio (Ca), o que pode contribuir para reduzir o consumo de fertilizantes em plantios florestais. Com o objetivo de avaliar o efeito da lama de cal como fonte de Ca e seus efeitos sobre a disponibilidade de nutrientes e produção de matéria seca da parte aérea de plantas de eucalipto, foram conduzidos dois ensaios em vasos, em casa de vegetação, na área de pesquisa da Klabin Florestal do Paraná. Os solos utilizados foram um Neossolo Quartzarênico órtico (RQo) e um Nitossolo Vermelho eutroférrico (NV). Os tratamentos constituíram-se de duas fontes de Ca, calcário dolomítico e lama de cal, e de uma testemunha, sendo identificados como: RQo testemunha, RQo calcário e RQo lama de cal; e NV testemunha, NV calcário e NV lama de cal. O delineamento experimental utilizado foi inteiramente casualizado, com quatro repetições. Para tanto, plantas de Eucalyptus saligna foram mantidas por 126 dias em vasos. Quantificou-se a produção de matéria seca e realizaram-se as análises de folhas e dos solos, por ocasião da coleta das plantas. Os dados revelaram que tanto a adição de calcário dolomítico quanto a lama de cal promoveram o fornecimento de Ca para as plantas de eucalipto, proporcionando aumentos na produção de matéria seca. Os teores de Ca e Na nas folhas de eucalipto foram acrescidos com a adição do resíduo ao solo, em comparação com o tratamento com calcário dolomítico, enquanto os teores de N, P, K e S foram semelhantes. As plantas cultivadas nos tratamentos RQo testemunha e RQo lama de cal apresentaram teores foliares de Mg abaixo da faixa considerada adequada. A adição de lama no solo elevou o pH e as concentrações de Ca e de Na, reduziu o Al trocável e não influenciou na disponibilidade de Mg, fato que pode proporcionar deficiência de Mg às plantas, em solos com baixos níveis desse nutriente, conforme observado neste estudo.
Resumo:
The scaling up of the Hot Wire Chemical Vapor Deposition (HW-CVD) technique to large deposition area can be done using a catalytic net of equal spaced parallel filaments. The large area deposition limit is defined as the limit whenever a further increment of the catalytic net area does not affect the properties of the deposited film. This is the case when a dense catalytic net is spread on a surface considerably larger than that of the film substrate. To study this limit, a system able to hold a net of twelve wires covering a surface of about 20 cm x 20 cm was used to deposit amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon over a substrate of 10 cm x 10 cm placed at a filament-substrate distance ranging from 1 to 2 cm. The uniformity of the film thickness d and optical constants, n(x, λ) and α(x,¯hω), was studied via transmission measurements. The thin film uniformity as a function of the filament-substrate distance was studied. The experimental thickness profile was compared with the theoretical result obtained solving the diffusion equations. The optimization of the filament-substrate distance allowed obtaining films with inhomogeneities lower than ±2.5% and deposition rates higher than 1 nm/s and 4.5 nm/s for (μc-Si:H) and (a-Si:H), respectively.
Resumo:
Amorphous and nanocrystalline silicon films obtained by Hot-Wire Chemical Vapor Deposition have been incorporated as active layers in n-type coplanar top gate thin film transistors deposited on glass substrates covered with SiO 2. Amorphous silicon devices exhibited mobility values of 1.3 cm 2 V - 1 s - 1, which are very high taking into account the amorphous nature of the material. Nanocrystalline transistors presented mobility values as high as 11.5 cm 2 V - 1 s - 1 and resulted in low threshold voltage shift (∼ 0.5 V).
Resumo:
We present structural and electrical properties for p- and n-type layers grown close to the transition between a-Si:H and nc-Si:H onto different substrates: Corning 1737 glass, ZnO:Al-coated glass and stainless steel. Structural properties were observed to depend on the substrate properties for samples grown under the same deposition conditions. Different behaviour was observed for n- and p-type material. Stainless steel seemed to enhance crystallinity when dealing with n-type layers, whereas an increased crystalline fraction was obtained on glass for p-type samples. Electrical conduction in the direction perpendicular to the substrate seemed to be mainly determined by the interfaces or by the existence of an amorphous incubation layer that might determine the electrical behaviour. In the direction perpendicular to the substrate, n-type layers exhibited a lower resistance value than p-type ones, showing better contact properties between the layer and the substrate.
Resumo:
Three Sm(2 Å)/Fe(3 Å) multilayers have been made using two electron beams in a high vacuum chamber onto very thin Kapton foils at different substrate temperatures, (Ts=40°C, 150°C and 230°C), with the same total thickness of 3000 Å. We have found that the substrate temperature strongly affects structure and magnetic properties of the samples. For a substrate temperature of 150°C the sample behaves as a three dimensional random magnet.
Resumo:
The substrate tuning technique was applied to a radio frequency magnetron sputtering system to obtain a variable substrate bias without an additional source. The dependence of the substrate bias on the value of the external impedance was studied for different values of chamber pressure, gas composition and rf input power. A qualitative explanation of the results is given, based on a simple model, and the role of the stray capacitance is clearly disclosed. Langmuir probe measurements show that this system allows independent control of the ion flux and the ion energy bombarding the growing film. For an argon flow rate of 2.8 sccm and a radio frequency power of 300 W (intermediate values of the range studied) the ion flux incident on the substrate was 1.3 X 1020-m-2-s-1. The maximum ion energy available in these conditions can be varied in the range 30-150 eV. As a practical application of the technique, BN thin films were deposited under different ion bombardment conditions. An ion energy threshold of about 80 eV was found, below which only the hexagonal phase was present in the films, while for higher energies both hexagonal and cubic phase were present. A cubic content of about 60% was found for an ion energy of 120 V.
Resumo:
Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.
Resumo:
Ethnopedological studies have mainly focused on agricultural land uses and associated practices. Nevertheless, peasant and indigenous populations use soil and land resources for a number of additional purposes, including pottery. In the present study, we describe and analyze folk knowledge related to the use of soils in non-industrial pottery making by peasant potters, in the municipality of Altinho, Pernambuco State, semiarid region at Brazil. Ethnoscientific techniques were used to record local knowledge, with an emphasis on describing the soil materials recognized by the potters, the properties they used to identify those soil materials, and the criteria employed by them to differentiate and relate such materials. The potters recognized three categories of soil materials: “terra” (earth), “barro” (clay) and, “piçarro” (soft rock). The multi-layered arrangement of these materials within the soil profiles was similar to the arrangement of the soil horizon described by formal pedologists. “Barro vermelho” (red clay) was considered by potters as the principal ceramic resource. The potters followed morphological and utilitarian criteria in distinguishing the different soil materials. Soils from all of these sites were sodium-affected Alfisols and correspond to Typic Albaqualf and Typic Natraqualf in the Soil Taxonomy (Soil Survey Staff, 2010).
Resumo:
A utilização de efluentes industriais tratados na irrigação do arroz por alagamento pode provocar alterações eletroquímicas e aumentar o teor de nutrientes na solução do solo. Para testar essa hipótese, este trabalho teve por objetivo avaliar a dinâmica dos atributos químicos e eletroquímicos da solução do solo sob cultivo de arroz irrigado com lixiviado industrial tratado, contendo 820 mg L-1 de Na. O experimento foi conduzido em casa de vegetação, utilizando-se como unidades experimentais vasos preenchidos com 20 kg de solo, em delineamento experimental em blocos casualizados, com três repetições. Os tratamentos foram: controle (irrigação com água destilada) e quatro proporções do lixiviado (25, 50, 75 e 100 %). As coletas de solução do solo foram feitas semanalmente a partir do quarto dia após o início do alagamento (DAA) até 84 DAA. A solução do solo foi amostrada na profundidade de 10 cm e analisada para os principais nutrientes e o Na, bem como para a demanda bioquímica de oxigênio (DBO5), relação de adsorção de sódio (RAS), condutividade elétrica (CE) e potencial redox (EH). A irrigação com o lixiviado aumentou os teores de K, Ca, Mg, S, P, N-NH+4, N-NO−3 e Na, assim como os valores de RAS e CE, para valores considerados prejudiciais para as plantas. Foi observada diminuição do potencial redox na solução do solo pela irrigação com lixiviado industrial tratado. Os teores de DBO5 e o N-NH+4 diminuíram com o tempo de alagamento. Em proporções menores que 25 %, o lixiviado industrial tratado pode aumentar os teores de nutrientes em solução sem causar interferência do Na para as plantas.
Resumo:
Alternative copper (Cu) sources could be used in fertilizer production, although the bioavailability of copper in these materials is unknown. The objective of this study was to evaluate the extractants neutral ammonium citrate (NAC), 2 % citric acid, 1 % acetic acid, 10 % HCl, 10 % H2SO4, buffer solution pH 6.0, DTPA, EDTA, water, and hot water in the quantification of available Cu content in several sources, relating them to the relative agronomic efficiency (RAE) of wheat grown in a clayey Latossolo Vermelho eutrófico (Oxisol) and Neossolo Quartzarênico (Typic Quartzipsamment). Copper was applied at the rate of 1.5 mg kg-1 as scrap slag, brass slag, Cu ore, granulated copper, and copper sulfate. The extractants 10 % HCl, 10 % H2SO4, and NAC extracted higher Cu concentrations. The RAE values of brass slag and Cu ore were similar to or higher than those of Cu sulfate and granulated Cu. Solubility in the 2nd NAC extractant, officially required for mineral fertilizers with Cu, was lower than 60 % for the scrap slag, Cu ore, and granulated copper sources. This fact indicates that adoption of the NAC extractant may be ineffective for industrial by-products, although no extractant was more efficient in predicting Cu availability for wheat fertilized with the Cu sources tested.