975 resultados para Absorption and beam attenuation
Resumo:
The control role of the relative phase between the probe and driving fields on the gain and dispersion in an open Lambda-type inversionless lasing system with spontaneously generated coherence (SGC) is investigated. It is shown that the inversionless gain and dispersion are quite sensitive to variation in the relative phase; by adjusting the value of the relative phase, electromagnetically induced transparency (EIT), a high refractive index with zero absorption and a larger inversionless gain can be realized. It is also shown that, in the contributions to the inversionless gain ( absorption) and dispersion, the contribution from SGC is always much larger than that from the dynamically induced coherence for any value of the relative phase. Our analysis shows that variation in the SGC effect will cause the spectrum regions and values of the inversionless gain and dispersion to vary evidently. We also found that, under the same conditions, the values of the inversionless gain and dispersion in the open system are evidently larger than those in the corresponding closed system; EIT occurs in the open system but cannot occur in the closed system.
Resumo:
Redox-active probes are designed and prepared for use in DNA-mediated electron transfer studies. These probes consist of ruthenium(II) complexes bound to nucleosides that possess metal-binding ligands. Low- and high-potential oxidants are synthesized from these modified nucleosides and display reversible one-electron electrochemical behavior. The ruthenium-modified nucleosides exhibit distinct charge-transfer transitions in the visible region that resemble those of appropriate model complexes. Resonance Raman and time-resolved emission spectroscopy are used to characterize the nature of these transitions.
The site-specific incorporation of these redox-active probes into oligonucleotides is explored using post-synthetic modification and solid-phase synthetic methods. The preparation of the metal-binding nucleosides, their incorporation into oligonucleotides, and characterization of the resulting oligonucleotides is described. Because the insertion of these probes into modified oligonucleotides using post-synthetic modification is unsuccessful, solid-phase synthetic methods are explored. These efforts lead to the first report of 3'-metallated oligonucleotides prepared completely by automated solid-phase synthesis. Preliminary efforts to prepare a bis-metallated oligonucleotide by automated synthesis are described.
The electrochemical, absorption, and emissive features of the ruthenium-modified oligonucleotides are unchanged from those of the precursor metallonucleoside. The absence of any change in these properties upon incorporation into oligonucleotides and subsequent hybridization suggests that the incorporated ruthenium(II) complex is a valuable probe for DNA-mediated electron transfer studies.
Resumo:
A summary of previous research is presented that indicates that the purpose of a blue copper protein's fold and hydrogen bond network, aka, the rack effect, enforce a copper(II) geometry around the copper(I) ion in the metal site. In several blue copper proteins, the C-terminal histidine ligand becomes protonated and detaches from the copper in the reduced forms. Mutants of amicyanin from Paracoccus denitrificans were made to alter the hydrogen bond network and quantify the rack effect by pKa shifts.
The pKa's of mutant amicyanins have been measured by pH-dependent electrochemistry. P94F and P94A mutations loosen the Northern loop, allowing the reduced copper to adopt a relaxed conformation: the ability to relax drives the reduction potentials up. The measured potentials are 265 (wild type), 380 (P94A), and 415 (P94F) mV vs. NHE. The measured pKa's are 7.0 (wild type), 6.3 (P94A), and 5.0 (P94F). The additional hydrogen bond to the thiolate in the mutants is indicated by a red-shift in the blue copper absorption and an increase in the parallel hyperfine splitting in the EPR spectrum. This hydrogen bond is invoked as the cause for the increased stability of the C-terminal imidazole.
Melting curves give a measure of the thermal stability of the protein. A thermodynamic intermediate with pH-dependent reversibility is revealed. Comparisons with the electrochemistry and apoamicyanin suggest that the intermediate involves the region of the protein near the metal site. This region is destabilized in the P94F mutant; coupled with the evidence that the imidazole is stabilized under the same conditions confirms an original concept of the rack effect: a high energy configuration is stabilized at a cost to the rest of the protein.
Resumo:
This dissertation is mainly divided into two sub-parts: organometallic and bioinorganic/materials projects. The approach for the projects involves the use of two different multinucleating ligands to synthesize mono- and multinuclear complexes. Chapter 2 describes the synthesis of a multinucleating tris(phosphinoaryl)benzene ligand used to support mono-nickel and palladium complexes. The isolated mononuclear complexes were observed to undergo intramolecular arene C¬–H to C–P functionalization. The transformation was studied by nuclear magnetic resonance spectroscopy and X-ray crystallography, and represents a rare type of C–H functionalization mechanism, facilitated by the interactions of the group 10 metal with the arene π–system.
Chapter 3 describes the construction of multinickel complexes supported by the same triphosphine ligand from Chapter 2. This chapter shows how the central arene in the ligand’s triarylbenzene framework can interact with dinickel and trinickel moieties in various binding modes. X-ray diffraction studies indicated that all compounds display strong metal–arene interactions. A cofacial triangulo nickel(0) complex supported by this ligand scaffold was also isolated and characterized. This chapter demonstrates the use of an arene as versatile ligand design element for small molecular clusters.
Chapter 4 presents the syntheses of a series of discrete mixed transition metal Mn oxido clusters and their characterization. The synthesis of these oxide clusters displaying two types of transition metals were targeted for systematic metal composition-property studies relevant to mixed transition metal oxides employed in electrocatalysis. A series of heterometallic trimanganese tetraoxido cubanes capped with a redox-active metal [MMn3O4] (M = Fe, Co, Ni, Cu) was synthesized starting from a [CaMn3O4] precursor and structurally characterized by X-ray crystallography and anomalous diffraction to conclusively determine that M is incorporated at a single position in the cluster. The electrochemical properties of these complexes were studied via cyclic voltammetry. The redox chemistry of the series of complexes was investigated by the addition of a reductant and oxidant. X-ray absorption and electron paramagnetic resonance spectroscopies were also employed to evaluate the product of the oxidation/reduction reaction to determine the site of electron transfer given the presence of two types of redox-active metals. Additional studies on oxygen atom transfer reactivities of [MMn3O4] and [MMn3O2] series were performed to investigate the effect of the heterometal M in the reaction rates.
Chapter 5 focuses on the use of [CoMn3O4] and [NiMn3O4] cubane complexes discussed in Chapter 4 as precursors to heterogeneous oxygen evolution reaction (OER) electrocatalysts. These well-defined complexes were dropcasted on electrodes with/without heat treatment, and the OER activities of the resulting films were evaluated. Multiple spectroscopic techniques were performed on the surface of the electrocatalysts to gain insight into the structure-function relationships based on the heterometallic composition. Depending on film preparation, the Co-Mn-oxide was found to change metal composition during catalysis, while the Ni-Mn oxide maintained the NiMn3 ratio. These studies represent the use of discrete heterometallic-oxide clusters as precursors for heterogeneous water oxidation catalysts.
Appendix A describes the ongoing effort to synthesize a series of heteromultimetallic [MMn3X] clusters (X = O, S, F). Complexes such as [ZnMn3O], [CoMn3O], [Mn3S], and [Mn4F] have been synthesized and structurally characterized. An amino-bis-oxime ligand (PRABO) has been installed on the [ZnMn3O] cluster. Upon the addition of O2, the desymmetrized [ZnMn3O] cluster only underwent an outer-sphere, one-electron oxidation. Efforts to build and manipulate other heterometallic [MMn3X] clusters are still ongoing, targeting O2 binding and reduction. Appendix B summarizes the multiple synthetic approaches to build a [Co4O4]-cubane complex relevant to heterogeneous OER electrocatalysis. Starting with the tricobalt cluster [LCo3(O2CR)3] and treatment various strong oxidants that can serve as oxygen atom source in the presence Co2+ salt only yielded tricobalt mono–oxo complexes. Appendix C presents the efforts to model the H-cluster framework of [FeFe]-hydrogenase by incorporating a synthetic diiron complex onto a protein-supported or a synthetic ligand-supported [Fe4S4]-cluster. The mutant ferredoxin with a [Fe4S4]-cluster and triscarbene ligand have been characterized by multiple spectroscopic techniques. The reconstruction of an H-cluster mimic has not yet been achieved, due to the difficulty of obtaining crystallographic evidence and the ambiguity of the EPR results.
Resumo:
PART I
The energy spectrum of heavily-doped molecular crystals was treated in the Green’s function formulation. The mixed crystal Green’s function was obtained by averaging over all possible impurity distributions. The resulting Green’s function, which takes the form of an infinite perturbation expansion, was further approximated by a closed form suitable for numerical calculations. The density-of-states functions and optical spectra for binary mixtures of normal naphthalene and deuterated naphthalene were calculated using the pure crystal density-of-state functions. The results showed that when the trap depth is large, two separate energy bands persist, but when the trap depth is small only a single band exists. Furthermore, in the former case it was found that the intensities of the outer Davydov bands are enhanced whereas the inner bands are weakened. Comparisons with previous theoretical calculations and experimental results are also made.
PART II
The energy states and optical spectra of heavily-doped mixed crystals are investigated. Studies are made for the following binary systems: (1) naphthalene-h8 and d8, (2) naphthalene--h8 and αd4, and (3) naphthalene--h8 and βd1, corresponding to strong, medium and weak perturbations. In addition to ordinary absorption spectra at 4˚K, band-to-band transitions at both 4˚K and 77˚K are also analyzed with emphasis on their relations to cooperative excitation and overall density-of-states functions for mixed crystals. It is found that the theoretical calculations presented in a previous paper agree generally with experiments except for cluster states observed in system (1) at lower guest concentrations. These features are discussed semi-quantitatively. As to the intermolecular interaction parameters, it is found that experimental results compare favorably with calculations based on experimental density-of-states functions but not with those based on octopole interactions or charge-transfer interactions. Previous experimental results of Sheka and the theoretical model of Broude and Rashba are also compared with present investigations.
PART III
The phosphorescence, fluorescence and absorption spectra of pyrazine-h4 and d4 have been obtained at 4˚K in a benzene matrix. For comparison, those of the isotopically mixed crystal pyrazine-h4 in d4 were also taken. All these spectra show extremely sharp and well-resolved lines and reveal detailed vibronic structure.
The analysis of the weak fluorescence spectrum resolves the long-disputed question of whether one or two transitions are involved in the near-ultraviolet absorption of pyrazine. The “mirror-image relationship” between absorption and emission shows that the lowest singlet state is an allowed transition, properly designated as 1B3u ← 1A1g. The forbidden component 1B2g, predicted by both “exciton” and MO theories to be below the allowed component, must lie higher. Its exact location still remains uncertain.
The phosphorescence spectrum when compared with the excitation phosphorescence spectra, indicates that the lowest triplet state is also symmetry allowed, showing a strong 0-0 band and a “mirror-image relationship” between absorption and emission. In accordance with previous work, the triplet state is designated as 3B3u.
The vibronic structure of the phosphorescence spectrum is very complicated. Previous work on the analysis of this spectrum all concluded that a long progression of v6a exists. Under the high resolution attainable in our work, the supposed v6a progression proves to have a composite triplet structure, starting from the second member of the progression. Not only is the v9a hydrogen-bending mode present as shown by the appearance of the C-D bending mode in the d4 spectrum, but a band of 1207 cm-1 in the pyrazine in benzene system and 1231 cm-1 in the mixed crystal system is also observed. This band is assigned as 2v6b and of a1g symmetry. Its anonymously strong intensity in the phosphorescence spectrum is interpreted as due to the Fermi resonance with the 2v6a and v9a band.
To help resolve the present controversy over the crystal phosphorescence spectrum of pyrazine, detailed vibrational analyses of the emission spectra were made. The fluorescence spectrum has essentially the same vibronic structure as the phosphorescence spectrum.
Resumo:
The use of transmission matrices and lumped parameter models for describing continuous systems is the subject of this study. Non-uniform continuous systems which play important roles in practical vibration problems, e.g., torsional oscillations in bars, transverse bending vibrations of beams, etc., are of primary importance.
A new approach for deriving closed form transmission matrices is applied to several classes of non-uniform continuous segments of one dimensional and beam systems. A power series expansion method is presented for determining approximate transmission matrices of any order for segments of non-uniform systems whose solutions cannot be found in closed form. This direct series method is shown to give results comparable to those of the improved lumped parameter models for one dimensional systems.
Four types of lumped parameter models are evaluated on the basis of the uniform continuous one dimensional system by comparing the behavior of the frequency root errors. The lumped parameter models which are based upon a close fit to the low frequency approximation of the exact transmission matrix, at the segment level, are shown to be superior. On this basis an improved lumped parameter model is recommended for approximating non-uniform segments. This new model is compared to a uniform segment approximation and error curves are presented for systems whose areas very quadratically and linearly. The effect of varying segment lengths is investigated for one dimensional systems and results indicate very little improvement in comparison to the use of equal length segments. For purposes of completeness, a brief summary of various lumped parameter models and other techniques which have previously been used to approximate the uniform Bernoulli-Euler beam is a given.
Resumo:
Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).
Part I
A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.
Part II
The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.
Part III
Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.
Part IV
The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.
For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.
The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.
Part V
For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.
Resumo:
Starting from the Huygens-Fresnel diffraction integral, the field expressions of apertured polychromatic laser beams with Gaussian and Hermite-Gaussian transverse modes are derived. Influence of the bandwidth on the intensity distributions of the laser beams is analyzed. It is found that when the bandwidth increases, the amplitudes and numbers of the intensity spikes decrease and beam uniformity is improved in the near field and the width of transverse intensity distribution of the apertured beams decreases in the far field. Thus, the smoothing and narrowing effects can be achieved by increasing the bandwidth. Also, these effects are found in the laser beams with Hermite-Gaussian transverse modes as the bandwidth increases.(c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
110 p.
Resumo:
A novel azo dye containing isoxazole ring and beta-diketone derivative (TIAD) and its two nickel (II) complexes (Ni (II)-ETIAD and Ni (II)-HTIAD) were synthesized in order to obtain a blue-violet light absorption and better thermal stability as a promising organic storage material for next generation of high density digital versatile disc-recordable (HD-DVD-R) systems that uses a high numerical aperture of 0.85 at 405 nm wavelength. Their structures were confirmed on the basis of elemental analysis, MS, FT-IR, UV-Vis and magnetic data. Their solubility in 2,2,3,3-tetrafluoro-1-propanol (TFP) and absorption properties of thin film were measured. The difference of absorption maximum from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Output beam quality of edge pumped planar waveguide lasers with confocal unstable resonators is investigated by diffraction methods, taking into account gain saturation, asymmetric pumping, and beam interaction. The influences of pumping uniformity, doping concentration, cavity length and effective Fresnel number are analyzed with respect to output beam quality and pumping efficiency. It is found that good beam quality and high efficiency can be obtained with asymmetric pumping and optimized negative branch confocal unstable resonators. (c) 2005 The Optical Society of Japan.
Resumo:
Nd3+ -codoped and Al3+-Nd3+-codoped high silica glasses have been prepared by sintering nanoporous glasses impregnated with Nd3+ stop and Al3+ ions. The Judd-Ofelt intensity parameters Omega(2,4,6) of Nd3+-doped high silica glasses were obtained and used to analyze aluminum codoping effects. Fluorescence properties of Nd3+-doped high silica glasses strongly depend on the Al3+ concentration. While Nd3+ ion absorption and emission intensities of obviously increase when aluminum is added to Nd3+-doped high silica glasses, fluorescence lifetimes decrease and aluminum codoping has almost no influence on the radiative quantum efficiencies. This indicates that aluminum codoping is responsible for an anti-quenching effect through a local modification of rare-earth environments rather than through physical cluster dispersion.
Resumo:
Effect of PbF2 on Yb3+ -doped fluorophosphate glasses is studied. Results indicate that proper amount of PbF2 has absolute advantages in improving the crystallization stability of fluorophosphate glasses. T, value performs a decreasing and increasing tendency with 25 mol% PbF2 as the turning-point. And the spectroscopic properties such as absorption and emission cross section, effective fluorescence linewidth are apparently enhanced with PbF2 over 25 mol%. Lasing parameters beta, I-sat and I-min increase slightly with the addition of PbF2. Raman analysis proves that over 20 mol% PbF2, destroys the phosphate vibration groups greatly. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm3+/Yb3+ codoped TeO2-BiCl3 glass system as a function of the BiCl3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH- groups. (c) 2005 Elsevier B.V. All rights reserved.
Characterization of Er3+-doped Na2O-WO3-TeO2 glass for ion-exchanged waveguide amplifiers and lasers
Resumo:
Er^(3+)-doped Na2O-WO3-TeO2 glass consistent with standard ion-exchange technology has been fabricated and characterized. The measured absorption and emission spectra of the glass were analyzed by the Judd-Ofelt and McCumber theories. The intensity parameters are Ω2 = 7.01