950 resultados para ATRIAL NATRIURETIC PEPTIDE
Resumo:
Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show anti-tumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution. Five derivatives of Kahalalide F were synthesized using several convergent approaches.
Resumo:
In HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules. Based on these findings, we compared the CD8 T cell response to human and murine Melan-A peptide by immunizing HLA-A2 transgenic mice. Even though the magnitude of the CTL response elicited by the murine Melan-A peptide was lower than the one elicited by the human Melan-A peptide, both populations of CTL recognized the corresponding immunizing peptide with the same functional avidity. Interestingly, CTL specific for the murine Melan-A peptide were completely cross-reactive against the orthologous human peptide, whereas anti-human Melan-A CTL recognized the murine Melan-A peptide with lower avidity. Structurally, this discrepancy could be explained by the fact that Ile32 of murine Melan-A24-33 created a larger TCR contact area than Thr34 of human Melan-A26-35. These data indicate that, even if immunizations with orthologous peptides can induce strong specific T cell responses, the quality of this response against syngeneic targets might be suboptimal due to the structure of the peptide-TCR contact surface.
Resumo:
In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events.
Resumo:
BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.
Resumo:
BACKGROUND: This study aimed to determine 5-year efficacy of catheter ablation for persistent atrial fibrillation (AF) using AF termination as a procedural end point. METHODS AND RESULTS: One hundred fifty patients (57±10 years) underwent persistent AF ablation using a stepwise ablation approach (pulmonary vein isolation, electrogram-guided, and linear ablation) with the desired procedural end point being AF termination. Repeat ablation was performed for recurrent AF or atrial tachycardia. AF was terminated by ablation in 120 patients (80%). Arrhythmia-free survival rates after a single procedure were 35.3%±3.9%, 28.0%±3.7%, and 16.8%±3.2% at 1, 2, and 5 years, respectively. Arrhythmia-free survival rates after the last procedure (mean 2.1±1.0 procedures) were 89.7%±2.5%, 79.8%±3.4%, and 62.9%±4.5%, at 1, 2, and 5 years, respectively. During a median follow-up of 58 (interquartile range, 43-73) months after the last ablation procedure, 97 of 150 (64.7%) patients remained in sinus rhythm without antiarrhythmic drugs. Another 14 (9.3%) patients maintained sinus rhythm after reinitiation of antiarrhythmic drugs, and an additional 15 (10.0%) patients regressed to paroxysmal recurrences only. Failure to terminate AF during the index procedure (hazard ratio 3.831; 95% confidence interval, 2.070-7.143; P<0.001), left atrial diameter ≥50 mm (hazard ratio 2.083; 95% confidence interval, 1.078-4.016; P=0.03), continuous AF duration ≥18 months (hazard ratio 1.984; 95% confidence interval, 1.024-3.846; P<0.04), and structural heart disease (hazard ratio 1.874; 95% confidence interval, 1.037-3.388; P=0.04) predicted arrhythmia recurrence. CONCLUSIONS: In patients with persistent AF, an ablation strategy aiming at AF termination is associated with freedom from arrhythmia recurrence in the majority of patients over a 5-year follow-up period. Procedural AF nontermination and specific baseline factors predict long-term outcome after ablation.
Resumo:
Double-stranded DNA (dsDNA) can trigger the production of type I interferon (IFN) in plasmacytoid dendritic cells (pDCs) by binding to endosomal Toll-like receptor-9 (TLR9; refs , , , , ). It is also known that the formation of DNA-antimicrobial peptide complexes can lead to autoimmune diseases via amplification of pDC activation. Here, by combining X-ray scattering, computer simulations, microscopy and measurements of pDC IFN production, we demonstrate that a broad range of antimicrobial peptides and other cationic molecules cause similar effects, and elucidate the criteria for amplification. TLR9 activation depends on both the inter-DNA spacing and the multiplicity of parallel DNA ligands in the self-assembled liquid-crystalline complex. Complexes with a grill-like arrangement of DNA at the optimum spacing can interlock with multiple TLR9 like a zipper, leading to multivalent electrostatic interactions that drastically amplify binding and thereby the immune response. Our results suggest that TLR9 activation and thus TLR9-mediated immune responses can be modulated deterministically.
Resumo:
In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants.
Resumo:
Amyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aβ42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aβ42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aβ action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aβ oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center.
Resumo:
The GH-2000 and GH-2004 projects have developed a method for detecting GH misuse based on measuring insulin-like growth factor-I (IGF-I) and the amino-terminal pro-peptide of type III collagen (P-III-NP). The objectives were to analyze more samples from elite athletes to improve the reliability of the decision limit estimates, to evaluate whether the existing decision limits needed revision, and to validate further non-radioisotopic assays for these markers. The study included 998 male and 931 female elite athletes. Blood samples were collected according to World Anti-Doping Agency (WADA) guidelines at various sporting events including the 2011 International Association of Athletics Federations (IAAF) World Athletics Championships in Daegu, South Korea. IGF-I was measured by the Immunotech A15729 IGF-I IRMA, the Immunodiagnostic Systems iSYS IGF-I assay and a recently developed mass spectrometry (LC-MS/MS) method. P-III-NP was measured by the Cisbio RIA-gnost P-III-P, Orion UniQ? PIIINP RIA and Siemens ADVIA Centaur P-III-NP assays. The GH-2000 score decision limits were developed using existing statistical techniques. Decision limits were determined using a specificity of 99.99% and an allowance for uncertainty because of the finite sample size. The revised Immunotech IGF-I - Orion P-III-NP assay combination decision limit did not change significantly following the addition of the new samples. The new decision limits are applied to currently available non-radioisotopic assays to measure IGF-I and P-III-NP in elite athletes, which should allow wider flexibility to implement the GH-2000 marker test for GH misuse while providing some resilience against manufacturer withdrawal or change of assays. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
BACKGROUND: Percutaneous catheter ablation of atrial fibrillation (CA-AF) is a treatment option for symptomatic drug-refractory atrial fibrillation (AF). CA-AF carries a risk for thromboembolic complications that has been minimized by the use of intraprocedural intravenous unfractionated heparin (UFH). The optimal administration of UFH as well as its kinetics are not well established and need to be precisely determined. METHODS AND RESULTS: A total 102 of consecutive patients suffering from symptomatic drug-refractory AF underwent CA-AF. The mean age was 61 ± 10 years old. After transseptal puncture of the fossa ovalis, weight-adjusted UFH bolus (100 U/kg) was infused. A significant increase in activated clotting time (ACT) was observed from an average value of 100 ± 27 seconds at baseline, to 355 ± 94 seconds at 10 min (T10), to 375 ± 90 seconds at 20 min (T20). Twenty-four patients failed to reach the targeted ACT value of ≥300 seconds at T10 and more than half of these remained with subtherapeutic ACT values at T20. This subset of patients showed similar clinical characteristics and amount of UFH but were more frequently prescribed preprocedural vitamin K1 than the rest of the study population. CONCLUSIONS: In a typical intervention setting, UFH displays unexpected slow anticoagulation kinetics in a significant proportion of procedures up to 20 minutes after infusion. These findings support the infusion of UFH before transseptal puncture or any left-sided catheterization with early ACT measurements to identify patients with delayed kinetics. They are in line with recent guidelines to perform CA-AF under therapeutic anticoagulation.
Resumo:
BACKGROUND AND PURPOSE: The best time for administering anticoagulation therapy in acute cardioembolic stroke remains unclear. This prospective cohort study of patients with acute stroke and atrial fibrillation, evaluated (1) the risk of recurrent ischemic event and severe bleeding; (2) the risk factors for recurrence and bleeding; and (3) the risks of recurrence and bleeding associated with anticoagulant therapy and its starting time after the acute stroke. METHODS: The primary outcome of this multicenter study was the composite of stroke, transient ischemic attack, symptomatic systemic embolism, symptomatic cerebral bleeding and major extracranial bleeding within 90 days from acute stroke. RESULTS: Of the 1029 patients enrolled, 123 had 128 events (12.6%): 77 (7.6%) ischemic stroke or transient ischemic attack or systemic embolism, 37 (3.6%) symptomatic cerebral bleeding, and 14 (1.4%) major extracranial bleeding. At 90 days, 50% of the patients were either deceased or disabled (modified Rankin score ≥3), and 10.9% were deceased. High CHA2DS2-VASc score, high National Institutes of Health Stroke Scale, large ischemic lesion and type of anticoagulant were predictive factors for primary study outcome. At adjusted Cox regression analysis, initiating anticoagulants 4 to 14 days from stroke onset was associated with a significant reduction in primary study outcome, compared with initiating treatment before 4 or after 14 days: hazard ratio 0.53 (95% confidence interval 0.30-0.93). About 7% of the patients treated with oral anticoagulants alone had an outcome event compared with 16.8% and 12.3% of the patients treated with low molecular weight heparins alone or followed by oral anticoagulants, respectively (P=0.003). CONCLUSIONS: Acute stroke in atrial fibrillation patients is associated with high rates of ischemic recurrence and major bleeding at 90 days. This study has observed that high CHA2DS2-VASc score, high National Institutes of Health Stroke Scale, large ischemic lesions, and type of anticoagulant administered each independently led to a greater risk of recurrence and bleedings. Also, data showed that the best time for initiating anticoagulation treatment for secondary stroke prevention is 4 to 14 days from stroke onset. Moreover, patients treated with oral anticoagulants alone had better outcomes compared with patients treated with low molecular weight heparins alone or before oral anticoagulants.
Resumo:
INTRODUCTION: Mitral isthmus (MI) ablation is an effective option in patients undergoing ablation for persistent atrial fibrillation (AF). Achieving bidirectional conduction block across the MI is challenging, and predictors of MI ablation success remain incompletely understood. We sought to determine the impact of anatomical location of the ablation line on the efficacy of MI ablation. METHODS AND RESULTS: A total of 40 consecutive patients (87% male; 54 ± 10 years) undergoing stepwise AF ablation were included. MI ablation was performed in sinus rhythm. MI ablation was performed from the left inferior PV to either the posterior (group 1) or the anterolateral (group 2) mitral annulus depending on randomization. The length of the MI line (measured with the 3D mapping system) and the amplitude of the EGMs at 3 positions on the MI were measured in each patient. MI block was achieved in 14/19 (74%) patients in group 1 and 15/21 (71%) patients in group 2 (P = NS). Total MI radiofrequency time (18 ± 7 min vs. 17 ± 8 min; P = NS) was similar between groups. Patients with incomplete MI block had a longer MI length (34 ± 6 mm vs. 24 ± 5 mm; P < 0.001), a higher bipolar voltage along the MI (1.75 ± 0.74 mV vs. 1.05 ± 0.69 mV; P < 0.01), and a longer history of continuous AF (19 ± 17 months vs. 10 ± 10 months; P < 0.05). In multivariate analysis, decreased length of the MI was an independent predictor of successful MI block (OR 1.5; 95% CI 1.1-2.1; P < 0.05). CONCLUSIONS: Increased length but not anatomical location of the MI predicts failure to achieve bidirectional MI block during ablation of persistent AF.