932 resultados para ANNEALING AMBIENT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARYMajor mineral, major element and minor element compositions are documented for a suite of drill core sediment samples representing a ~350m profile through the Solimões Formation sediments (Western Amazonia). Major element compositions are quantified using a chemical index of alteration (CIA) in order to asses the degree of weathering. Significant variations in CIA values throughout the profile, as well as abrupt changes between overlying, suggest that during the generation and deposition of thes sediments there were rapid changes in the ambient tectonic setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aimed to assess the early-age evolution of E-modulus of epoxy adhesives used for Fibre-Reinforced Polymer (FRP) strengthening applications. The study involved adapting an existing technique devised for continuous monitoring of concrete stiffness since casting, called EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) for evaluation of epoxy stiffness. Furthermore, monotonic tensile tests according to ISO standards and cyclic tensile tests were carried out at several ages. A comparison between the obtained results was performed in order to better understand the performance of the several techniques in the assessment of stiffness of epoxy resins. When compared to the other methodologies, the method for calculation of E-modulus recommended by ISO standard led to lower values, since in the considered strain interval, the adhesive had a non-linear stress–strain relationship. The EMM-ARM technique revealed its capability in clearly identifying the hardening kinetics of epoxy adhesives, measuring the material stiffness growth during the entire curing period. At very early ages the values of Young׳s modulus obtained with quasi-static tests were lower than the values collected by EMM-ARM, due to the fact that epoxy resin exhibited a significant visco-elastic behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Our Lady of Conception church is located in village of Monforte (Portugal) and is not in use nowadays. The church presents structural damage and, consequently, a study was carried out. The study involved the survey of the damage, dynamic identification tests under ambient vibration and the numerical analysis. The church is constituted by the central nave, the chancel, the sacristy and the corridor to access the pulpit. The masonry walls present different thickness, namely 0.65 m in the chancel, 0.70 m in the sacristy, 0.92 in the central nave and 0.65 m in the corridor. The masonry walls present 8 buttresses with different dimensions. The total longitudinal and transversal dimensions of the church are equal to 21.10 m and 14.26 m, respectively. The survey of the damage showed that, in general, the masonry walls are in good conditions, with exception of the transversal walls of the nave, which present severe cracks. The arches of the vault presents also severe cracks along the central nave. As consequence, the infiltrations have increased the degradation of the vault and paintings. Furthermore, the foundations present settlements in the Southwest direction. The dynamic identification test were carried out under the action of ambient excitation of the wind and using 12 piezoelectric accelerometers of high sensitivity. The dynamic identification tests allowed to estimate the dynamic properties of the church, namely frequencies, mode shapes and damping ratios. A FEM numerical model was prepared and calibrated, based on the first four experimental modes estimated in the dynamic identification tests. The average error between the experimental and numerical frequencies of the first four modes is equal to 5%. After calibration of the numerical model, pushover analyses with a load pattern proportional to the mass, in the transversal and longitudinal direction of the church, were performed. The results of the analysis numerical allow to conclude that the most vulnerable direction of the church is in the transversal one and the maximum load factor is equal to 0.35.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays the main honey producing countries require accurate labeling of honey before commercialization, including floral classification. Traditionally, this classification is made by melissopalynology analysis, an accurate but time-consuming task requiring laborious sample pre-treatment and high-skilled technicians. In this work the potential use of a potentiometric electronic tongue for pollinic assessment is evaluated, using monofloral and polyfloral honeys. The results showed that after splitting honeys according to color (white, amber and dark), the novel methodology enabled quantifying the relative percentage of the main pollens (Castanea sp., Echium sp., Erica sp., Eucaliptus sp., Lavandula sp., Prunus sp., Rubus sp. and Trifolium sp.). Multiple linear regression models were established for each type of pollen, based on the best sensors sub-sets selected using the simulated annealing algorithm. To minimize the overfitting risk, a repeated K-fold cross-validation procedure was implemented, ensuring that at least 10-20% of the honeys were used for internal validation. With this approach, a minimum average determination coefficient of 0.91 ± 0.15 was obtained. Also, the proposed technique enabled the correct classification of 92% and 100% of monofloral and polyfloral honeys, respectively. The quite satisfactory performance of the novel procedure for quantifying the relative pollen frequency may envisage its applicability for honey labeling and geographical origin identification. Nevertheless, this approach is not a full alternative to the traditional melissopalynologic analysis; it may be seen as a practical complementary tool for preliminary honey floral classification, leaving only problematic cases for pollinic evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Brazilian Amazon, large areas of abandoned lands may revert to secondary forest. In the process, pioneer tree species have an important role to restore productivity in old fields and improve environmental conditions. To determine potential photosynthesis (Apot), stomatal conductance (g), transpiration (E), and leaf micronutrient concentrations in Ochroma pyramidale (Cav. ex Lam.) Urban a study was carried out in the Brazilian Amazon (01o 51' S; 60o 04' W). Photosynthetic parameters were measured at increasing [CO2], saturating light intensity (1 mmol (photons) m-2 s-1), and ambient temperature. The rate of electron-transport (J), Apot,and water-use efficiency (WUE) increased consistently at increasing internal CO2 concentration (Ci). Conversely, increasing [CO2] decreased gs, E, and photorespiration (Pr). At the CO2-saturated region of the CO2 response curve (1.1 mmol (CO2) mol-1(air), J was 120 μmol (e-) m-2s-1 and Apot reached up to 24 μmol (CO2) m-2s-1. Likewise, at saturating C1 g and E were 30 and 1.4 mmol (H2O) m-2s-1, respectively, and P 2 r about 1.5 μmol (CO2) m-2s-1. Foliar nutrients were 185, 134, 50, and 10 μmol (element) m-2 (leaf area) for Fe, Mn, Zn, and Cu, respectively. It was concluded that [CO ] probably limits light saturated photosynthesis in this site. Furthermore, from a nutritional point of view, the low Fe to Cu ratio (15:1) may reflect nutritional imbalance in O. pyramidale at this site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human activity is very dynamic and subtle, and most physical environments are also highly dynamic and support a vast range of social practices that do not map directly into any immediate ubiquitous computing functionally. Identifying what is valuable to people is very hard and obviously leads to great uncertainty regarding the type of support needed and the type of resources needed to create such support. We have addressed the issues of system development through the adoption of a Crowdsourced software development model [13]. We have designed and developed Anywhere places, an open and flexible system support infrastructure for Ubiquitous Computing that is based on a balanced combination between global services and applications and situated devices. Evaluation, however, is still an open problem. The characteristics of ubiquitous computing environments make their evaluation very complex: there are no globally accepted metrics and it is very difficult to evaluate large-scale and long-term environments in real contexts. In this paper, we describe a first proposal of an hybrid 3D simulated prototype of Anywhere places that combines simulated and real components to generate a mixed reality which can be used to assess the envisaged ubiquitous computing environments [17].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, Ag:SiC nanocermets were prepared via rapid thermal annealing (RTA) of pulsed laser-deposited SiC/Ag/SiC trilayers grown on Si substrate. Atomic force microscope images show that silver nanoparticles (Ag NPs) are formed after RTA, and the size of NPs increases with increasing Ag deposition time (t Ag). Sharp dip observed in the reflectance spectra confirmed the existence of Ag surface plasmons (SPs). The infrared transmission spectra showed an intense and broad absorption band around 780–800 cm−1 that can be assigned to Si-C stretching vibration mode. Influence of t Ag on the spectral characteristics of SP-enhanced photoluminescence (PL) and electrical properties of silicon carbide (SiC) films has been investigated. The maximum PL enhancement by 5.5 times for Ag:SiC nanocermets is achieved when t Ag ≈ 50 s. This enhancement is due to the strong resonant coupling between SiC and the SP oscillations of the Ag NPs. Presence of Ag NPs in SiC also induces a forming-free resistive switching with switching ratio of 2 × 10−2. The analysis of I–V curves demonstrates that the trap-controlled space-charge-limited conduction with filamentary model is the governing mechanism for the resistive switching in nanocerment thin films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline AlN coatings deposited on Ti-electrodes films were sputtered by using nitrogen both as reactive gas and sputtering gas, in order to obtain high purity coatings with appropriate properties to be further integrated into wear resistance coatings as a piezoelectric monitoring wear sensor. The chemical composition, the structure and the morphology of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy techniques. These measurements show the formation of highly (101), (102) and (103) oriented AlN films with good piezoelectric and mechanical properties suitable for applications in electronic devices. Through the use of lower nitrogen flow a densification of the AlN coating occurs in the microstructure, with an improvement of the crystallinity along with the increase of the hardness. Thermal stability of aluminum nitride coatings at high temperature was also examined. It was found an improvement of the piezoelectric properties of the highly (10x) oriented AlN films which became c-axis (002) oriented after annealing. The mechanical behavior after heat treatment shows an important enhancement of the surface hardness and Young’s modulus, which decrease rapidly with the increase of the indentation depth until approach constant values close to the substrate properties after annealing. Thus, thermal annealing energy promotes not only the rearrangement of Al–N network, but also the occurrence of a nitriding process of unsaturated Al atoms which cause a surface hardening of the film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Companies and researchers involved in developing miniaturized electronic devices face the basic problem of the needed batteries size, finite life of time and environmental pollution caused by their final deposition. The current trends to overcome this situation point towards Energy Harvesting technology. These harvesters (or scavengers) store the energy from sources present in the ambient (as wind, solar, electromagnetic, etc) and are costless for us. Piezoelectric devices are the ones that show a higher power density, and materials as ceramic PZT or polymeric PVDF have already demonstrated their ability to act as such energy harvester elements. Combinations between piezoelectric and electromagnetic mechanism have been also extensively investigated. Nevertheless, the power generated by these combinations is limited under the application of small magnetic fields, reducing the performance of the energy harvester [1]. In the last years the appearance of magnetoelectric (ME) devices, in which the piezoelectric deformation is driven by the magnetostrictive element, enables to extract the energy of very small electromagnetic signals through the generated magnetoelectric voltage at the piezoelectric element. However, very little work has been done testing PVDF polymer as piezoelectric constituent of the ME energy harvester device, and only to be proposed as a possibility of application [2]. Among the advantages of using piezopolymers for vibrational energy harvesting we can remember that they are ductile, resilient to shock, deformable and lightweight. In this work we demonstrate the feasibility of using magnetostrictive Fe-rich magnetic amorphous alloys/piezoelectric PVDF sandwich-type laminated ME devices as energy harvesters. A very simple experimental set-up will show how these laminates can extract energy, in amounts of μW, from an external AC field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work evaluated several aspects of the generalized stress response [endocrine (cortisol), metabolic (glucose), hematologic (hematocrit and hemoglobin) and cellular (HSP70)] in the Amazonian warm-water fish matrinxã (Brycon amazonicus ) subjected to an acute cold shock. This species farming has been done in South America, and growth and feed conversion rates have been interesting. However, in subtropical areas of Brazil, where the water temperature can rapidly change, high rates of matrinxã mortality have been associated with abrupt decrease in the water temperature. Thus, we subjected matrinxã to a sudden cold shock by transferring the fish directly to tanks in which the water temperature was 10ºC below the initial conditions (cold shock from 28ºC to 18ºC). After 1h the fish were returned to the original tanks (28ºC). The handling associated with tank transfer was also imposed on control groups (not exposed to cold shock). While exposure to cold shock did not alter the measured physiological conditions within 1h, fish returned to the ambient condition (water at 28º C) significantly increased plasma cortisol and glucose levels. Exposure to cold shock and return to the warm water did not affect HSP70 levels. The increased plasma cortisol and glucose levels after returning the fish to warm water suggest that matrinxã requires cortisol and glucose for adaptation to increased temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless body sensor networks (WBSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WBSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. However, one important and difficult aspect of WBSNs is to provide data transmissions with quality of service, among other factors due to the antennas being small size and placed close to the body. Such transmissions cannot be fully provided without the assumption of a MAC protocol that solves the problems of the medium sharing. A vast number of MAC protocols conceived for wireless networks are based on random or scheduled schemes. This paper studies firstly the suitability of two MAC protocols, one using CSMA and the other TDMA, to transmit directly to the base station the signals collected continuously from multiple sensor nodes placed on the human body. Tests in a real scenario show that the beaconed TDMA MAC protocol presents an average packet loss ratio lower than CSMA. However, the average packet loss ratio is above 1.0 %. To improve this performance, which is of vital importance in areas such as e-health and ambient assisted living, a hybrid TDMA/CSMA scheme is proposed and tested in a real scenario with two WBSNs and four sensor nodes per WBSN. An average packet loss ratio lower than 0.2 % was obtained with the hybrid scheme. To achieve this significant improvement, the hybrid scheme uses a lightweight algorithm to control dynamically the start of the superframes. Scalability and traffic rate variation tests show that this strategy allows approximately ten WBSNs operating simultaneously without significant performance degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olive oils may be commercialized as intense, medium or light, according to the intensity perception of fruitiness, bitterness and pungency attributes, assessed by a sensory panel. In this work, the capability of an electronic tongue to correctly classify olive oils according to the sensory intensity perception levels was evaluated. Cross-sensitivity and non-specific lipid polymeric membranes were used as sensors. The sensor device was firstly tested using quinine monohydrochloride standard solutions. Mean sensitivities of 14±2 to 25±6 mV/decade, depending on the type of plasticizer used in the lipid membranes, were obtained showing the device capability for evaluating bitterness. Then, linear discriminant models based on sub-sets of sensors, selected by a meta-heuristic simulated annealing algorithm, were established enabling to correctly classify 91% of olive oils according to their intensity sensory grade (leave-one-out cross-validation procedure). This capability was further evaluated using a repeated K-fold cross-validation procedure, showing that the electronic tongue allowed an average correct classification of 80% of the olive oils used for internal-validation. So, the electronic tongue can be seen as a taste sensor, allowing differentiating olive oils with different sensory intensities, and could be used as a preliminary, complementary and practical tool for panelists during olive oil sensory analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, Ba0.8Sr0.2TiO3 (BST)/ITO structures were grown on glass substrate and laser assisted annealing (LAA) was performed to promote the crystallization of BST. Atomic force microscopy and X-ray diffraction studies confirm the crack free and polycrystalline perovskite phase of BST. White light controlled resistive switching (RS) effect in Au/BST/ITO device is investigated. The device displays the electroforming-free bipolar RS characteristics and are explained by the modulationof the width and height of barrier at the BST/ITO interface via ferroelectric polarization. Moreover, the RS effect is signifi- cantly improved under white light illumination compared to that in the dark. The enhanced RS and photovoltaic effects are explained by considering depolarization field and charge distribution at the interface. The devices exhibit stable retention characteristics with low currents (mA), which make them attractive for non volatile memory devices.