990 resultados para ACETYLCHOLINESTERASE ACTIVITY
Resumo:
Preovulatory follicular atresia was studied using pregnant mare serum gonadotropin (PMSG)-primed rats (15 IU/rat) which were deprived of hormonal support either by allowing the metabolic clearance of the PMSG or by injecting a specific PMSG antiserum (PMSG a/s). Atresia was monitored by an increase in lysosomal cathepsin-D activity and a decrease in the receptor activity of the granulosa cells (GC) isolated from the preovulatory follicles. It was shown that the increase in lysosomal activity and the decrease in receptor activity seen at 96 h after PMSG (or PMSG plus PMSG a/s) could be arrested both by follicle stimulating hormone (FSH) and luteinizing hormone (LH). Injection of cyanoketone or clomiphene citrate together with FSH/LH prevented this 'rescue' suggesting a role for estrogens in the regulation of atresia. Although the administration of estradiol-17 beta (20 micrograms/rat) together with PMSG a/s could show a 'rescue effect' in terms of reduction in cathepsin-D activity the gonadotropin receptor activities of these granulosa cells were not restored. The injection of dihydrotestosterone (DHT) to 48 h PMSG-primed rats induced atresia as noted by an increase in cathepsin-D activity. However, the exogenous administration of FSH along with DHT prevented this atretic effect suggesting that DHT is not having a direct effect on atresia. Determination of androgen: estrogen content of the granulosa cells and an analysis of the individual profile of androgen and estrogen revealed that the increase in cathepsin-D activity could be correlated only with the decrease in GC estrogen content. This along with the observation that GC showed a loss of estrogen synthesis well before the increase in cathepsin-D activity strongly points out that the lack of estrogen rather than an increase in androgen is the principle factor responsible for the atresia of preovulatory follicles in the rat.
Resumo:
The thermophilic fungus,Thermomyces lanuginosus, was grown in a glucose-asparagine liquid medium. Optimal mycelial growth occurred at 50°C. The conditions for sporulation were different from those required for vegetative growth. the former being favoured by lower nitrogen level and temperature. Trehalase (α, α-glu coside-l-glucohydrolase, EC 3.2.1.28) was one of the most active glycosidases at 50°C. Non-sporulating mycelium had higher levels of this enzyme than the sporulating mycelium. Trehalase was synthesized constitutively and its activity appears to be controlled by catabolite repression.
Resumo:
Yhteenveto: Kemikaalien teollisesta käsittelystä vesieliöille aiheutuvien riskien arviointi mallin avulla.
Resumo:
During active growth of Escherichia coli, majority of the transcriptional activity is carried out by the housekeeping sigma factor (Sigma 70), whose association with core RNAP is generally favoured because of its higher intracellular level and higher affinity to core RNAP. In order to facilitate transcription by alternative sigma factors during nutrient starvation, the bacterial cell uses multiple strategies by which the transcriptional ability of Sigma 70 is diminished in a reversible manner. The facilitators of shifting the balance in favour of alternative sigma factors happen to be as diverse as a small molecule (p)ppGpp (represents ppGpp or pppGpp), proteins (DksA, Rsd) and a species of RNA (6S RNA). Although 6S RNA and (p)ppGpp were known in literature for a long time, their role in transcriptional switching has been understood only in recent years. With themelucidation of function of DksA, a new dimension has been added to the phenomenon of stringent response. As the final outcome of actions of (p)ppGpp, DksA, 6S RNA and Rsd is similar, there is a need to analyse hese mechanisms in a collective manner. We review the recent trends in understanding the regulation of Sigma 70 by (p)ppGpp, DksA, Rsd and 6S RNA and present a case for evolving a unified model of RNAP redistribution during starvation by modulation of Sigma 70 activity in E. coli.
Resumo:
Dicobalt(II) complexes [{(B)Co-11)(2)(mu-dtdp)(2)] (1-3) of 3,3'-dithiodipropionic acid (dtdp) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido13,2-a:2',3'-clphenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The elemental analysis and mass spectral data suggest binuclear formulation of the complexes. The redox inactive complexes have magnetically non-interacting dicobalt(II) core showing magnetic moment of similar to 3.9 p per cobalt(II) center. The complexes show good binding propensity to calf thymus DNA giving K-b values within 4.3 x 10(5)-4.0 x 10(6) M-1. Thermal melting and viscosity data predict DNA groove binding and/or partial intercalative nature of the complexes. The complexes show significant anaerobic DNA cleavage activity in green light under argon atmosphere possibly involving radical species generated from the disulfide moiety in a type-I pathway. The DNA cleavage reaction under aerobic medium in green light is found to involve hydroxyl radical species. The dppz complex 3 exhibits significant photocytotoxicity in HeLa cervical cancer cells with an IC50 value of 2.31 mu M in UV-A light of 365 nm, while it is essentially non-toxic in dark giving an IC50 value of >200 mu M. A significant reduction of the dark toxicity of the organic dppz base (IC50 = 8.3 mu M in dark) is observed on binding to the cobalt(II) center while essentially retaining its photocytotoxicity in UV-A light (IC50 = 0.4 mu M). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ferrocene-appended copper(II) complexes [Cu( Fc-tpy)(B)](ClO4)(2) (1-3) and [Cu(Ph-tpy)(dppz)](ClO4)(2) (4) as control, where Fc-tpy is 4'-ferroceny1-2,2':6',2 ''-terpyridine, Ph-tpy is 4'-pheny1-2,2':6',2 ''-terpyridine, and B is a phenanthroline base, viz., 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), were prepared and structurally characterized, and their DNA binding, photoactivated DNA cleavage activity, and cytotoxic properties were studied [Fe = (eta(5)-C5H4)Fe-11(eta(5)-C5H5)]. Complexes 1 and 3 as hexafluorophosphate salts were structurally characterized by X-ray crystallography. Molecular structures of [Cu(Fc-tpy)(phen)](PF6)(2) (1a) and [Cu(Fc-tpy)(dppz)](PF6)(2)center dot MeCN (3a center dot MeCN) show a distorted square-pyramidal geometry at copper(II), with the Fc-tpy ligand and the phenanthroline base showing respective tridentate and bidentate binding modes. The phenanthroline base exhibits axial-equatorial bonding, while the Fc-tpy ligand binds at the basal plane. The complexes showed quasi-reversible cyclic voltammetric responses near 0.45 and -0.3 V vs SCE in aqueous DMF-0.1 M KCl assignable to the Fc(+)-Fc and Cu(II) Cu(1) redox couples, respectively. The complexes bind to DNA, giving K-b values of 1.4 x 10(4) to 5.6 x 10(5) M-1 in the order 4 similar to 3 > 2 > 1. Thermal denaturation and viscometric titration data suggest groove and/or partial intercalative mode of DNA binding of the complexes. The complexes showed chemical nuclease activity in the presence of 3-mercaptopropionic acid (0.5 mM) or H2O2 (0.25 mM). Complexes 2-4 showed plasmid DNA cleavage activity in visible light, forming (OH)-O-center dot radicals. The Fc-tpy complex 3 showed better DNA photocleavage activity than its Ph-tpy analogue. The ferrocene moiety in the dppz complex 3 makes it more photocytotoxic than the Ph-tpy analogue 4 in HeLa cells.
Resumo:
The phosphotriesterase (PTE) activity of a series of binuclear and mononuclear zinc(II) complexes and metallo-beta-lactamase (m beta 1) from Bacillus cereus was studied. The binuclear complex 1, which exhibits good m beta 1 activity, shows poor PTE activity. In contrast,complex 2, a poor mimic of m beta 1, exhibits much higher activity than 1 The replacement of Cl- ligands by OH- is important for the high PTE activity of complex 2 because this complex does not show any catalytic activity in methanol. The natural enzyme m beta 1 from B. cereus is also found to be an inefficient catalyst in the hydrolysis of phosphotriesters. These observations indicate that the binding of beta-lactam substrates at the binuclear zinc(II) center is different from that of phosphotriesters. Furthermore, phosphodiesters, the products from the hydrolysis of triesters, significantly inhibit the PTE activity of m beta 1 and its functional mimics. Although the mononuclear complexes 3 and 4 exhibited significant m beta 1 activity, these complexes are found to be almost inactive in the hydrolysis of phosphotriesters. These observations indicate that the elimination of phosphodiesters from the reaction site is important for the PTE activity of zinc(II) complexes.
Resumo:
Activity systems are the cognitively linked groups of activities that consumers carry out as a part of their daily life. The aim of this paper is to investigate how consumers experience value through their activities, and how services fit into the context of activity systems. A new technique for illustrating consumers’ activity systems is introduced. The technique consists of identifying a consumer’s activities through an interview, then quantitatively measuring how the consumer evaluates the identified activities on three dimensions: Experienced benefits, sacrifices and frequency. This information is used to create a graphical representation of the consumer’s activity system, an “activityscape map”. Activity systems work as infrastructure for the individual consumer’s value experience. The paper contributes to value and service literature, where there currently are no clearly described standardized techniques for visually mapping out individual consumer activity. Existing approaches are service- or relationship focused, and are mostly used to identify activities, not to understand them. The activityscape representation provides an overview of consumers’ perceptions of their activity patterns and the position of one or several services in this pattern. Comparing different consumers’ activityscapes, it shows the differences between consumers' activity structures, and provides insight into how services are used to create value within them. The paper is conceptual; an empirical illustration is used to indicate the potential in further empirical studies. The technique can be used by businesses to understand contexts for service use, which may uncover potential for business reconfiguration and customer segmentation.
Resumo:
Immunoliposomes were prepared using the antibody raised against the avian myeloblastosis virus envelope glycoprotein, gp80. Adriamycin was encapsulated into immunoliposomes. More drug was delivered into target cells when the drug encapsulated in immunoliposomes was incubated with the cells. The drug encapsulated in immunoliposomes was able to inhibit the RNA synthesis twice more than free drug in the virus-transformed myeloblasts. Pre-treatment of cells with ammonium chloride, reversed the effect of drug encapsulated in immunoliposomes. The drugs encapsulated in immunoliposomes had marginal effect on the RNA synthesis of non-target cells, the yolk sac cells. Colony formation by virus-transformed cells and focus formation by virus-infected yolk sac cells was inhibited significantly by the drug encapsulated in immunoliposomes.
Resumo:
A series of 6,11-dihydro-11-oxodibenz[b,e]oxepin-2-acetic acids (DOAA) which are known to be anti-inflammatory agents were studied. The geometries of some of the molecules obtained from X-ray crystallography were used in the calculations as such while the geometries of their derivatives were obtained by local, partial geometry optimization around the Sites of substitution employing the AMI method, keeping the remaining parts of the geometries the same as those in the parent molecules. Molecular electrostatic potential (MEP) mapping was performed for the molecules using optimized hybridization displacement charges (HDC) combined with Lowdin charges, as this charge distribution has been shown earlier to yield near ab initio quality results. A good correlation has been found between the MEP values near the oxygen atoms of the hydroxyl groups of the carboxy groups of the molecules and their anti-inflammatory activities. The result is broadly in agreement with the model proposed earlier by other authors regarding the structure-activity relationship for other similar molecules.
Resumo:
Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.
Resumo:
The phosphate-inhibitable neutral protease activity of the heavy mitochondrial fraction of rat liver is of lysosomal origin. The activity is essentially due to the thiol proteinases of the lysosomes. Digitonin treatment of the mitochondrial fraction results in the release of about 85 per cent of the neutral protease activity and the residual activity has an alkaline pH optimum and is not inhibited by phosphate. Clofibrate feeding at 0.5 per cent level in the diet results in enhanced levels of lysosomal enzymes. The increase is however restricted to the lysosome-rich fraction such that the activities associated with the heavy mitochondrial fraction show a significant decrease. It is suggested that clofibrate inhibits engulfment of mitochondria by lysosomes and this results in enhanced mitochondrial protein content.