959 resultados para AB INITIO METHODS
Resumo:
Carbon nanotubes rank amongst potential candidates for a new family of nanoscopic devices, in particular for sensing applications. At the same time that defects in carbon nanotubes act as binding sites for foreign species, our current level of control over the fabrication process does not allow one to specifically choose where these binding sites will actually be positioned. In this work we present a theoretical framework for accurately calculating the electronic and transport properties of long disordered carbon nanotubes containing a large number of binding sites randomly distributed along a sample. This method combines the accuracy and functionality of ab initio density functional theory to determine the electronic structure with a recursive Green`s functions method. We apply this methodology on the problem of nitrogen-rich carbon nanotubes, first considering different types of defects and then demonstrating how our simulations can help in the field of sensor design by allowing one to compute the transport properties of realistic nanotube devices containing a large number of randomly distributed binding sites.
Resumo:
The use of the spin of the electron as the ultimate logic bit-in what has been dubbed spintronics-can lead to a novel way of thinking about information flow. At the same time single-layer graphene has been the subject of intense research due to its potential application in nanoscale electronics. While defects can significantly alter the electronic properties of nanoscopic systems, the lack of control can lead to seemingly deleterious effects arising from the random arrangement of such impurities. Here we demonstrate, using ab initio density functional theory and non-equilibrium Green`s functions calculations, that it is possible to obtain perfect spin selectivity in doped graphene nanoribbons to produce a perfect spin filter. We show that initially unpolarized electrons entering the system give rise to 100% polarization of the current due to random disorder. This effect is explained in terms of different localization lengths for each spin channel which leads to a new mechanism for the spin filtering effect that is disorder-driven.
Resumo:
We report results on the electronic, vibrational, and optical properties of SnO(2) obtained using first-principles calculations performed within the density functional theory. All the calculated phonon frequencies, real and imaginary parts of complex dielectric function, the energy-loss spectrum, the refractive index, the extinction, and the absorption coefficients show good agreement with experimental results. Based on our calculations, the SnO(2) electron and hole effective masses were found to be strongly anisotropic. The lattice contribution to the low-frequency region of the SnO(2) dielectric function arising from optical phonons was also determined resulting the values of E > (1aSyen) (latt) (0) = 14.6 and E > (1ayen) (latt) (0) = 10.7 for directions perpendicular and parallel to the tetragonal c-axis, respectively. This is in excellent agreement with the available experimental data. After adding the electronic contribution to the lattice contribution, a total average value of E >(1)(0) = 18.2 is predicted for the static permittivity constant of SnO(2).
Resumo:
Using the first-principles real-space linear muffin-tin orbital method within the atomic sphere approximation (RS-LMTO-ASA) we study hyperfine and local magnetic properties of substituted pure Fe and Fe-Cu clusters in an fcc Cu matrix. Spin and orbital contributions to magnetic moments, hyperfine fields and the Mossbauer isomer shifts at the Fe sites in Fe precipitates and Fe-Cu alloy clusters of sizes up to 60 Fe atoms embedded in the Cu matrix are calculated and the influence of the local environment on these properties is discussed.
Resumo:
We study the effect of thermal disorder on the electronic structure of one-dimensional poly-para-phenylene (PPP). In a real chain the torsion angles between rings are bound to be distributed over a range of values, which depend on temperature, and thus the chain is intrinsically disordered. In this study we simulated this kind of thermally induced off-diagonal disorder through the simple Huckel method. We base our Hamiltonian on ab initio results for the effect of temperature on torsion angles, and the effect of torsion angles on the energy gap. We analyze the electronic structure of 200-monomer-long chains focusing on the density of states, and the associated localization character (measured by the inverse participation ratio). Our results contrast with the usually assumed Gaussian-shaped density of localized states for disordered systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We performed classical molecular dynamics simulations of the vapor-deposition of alpha-T4 oligomers on the TiO(2)-anatase (101) surface, comparing different sets of charges associated with the atoms of the model. The potential energy surfaces for alpha-T4 and TiO(2) were described by re-parametrizations of the Universal force field with charges given by the charge equilibration (QEq) scheme, or with fixed charges obtained by an ab initio method using the Hirshfeld partition. The two sets of charges lead to completely different results for the interface formation, and for the characteristics of the organic film, with a clearly defined alpha-T4 contact layer in the QEq case, and a more homogeneous molecular distribution when using Hirshfeld charges. The main reason for the discrepancy was found to be the incorrect charge assignment given by QEq to the sulfur and alpha-carbon atoms in thiophenes, and highlight the relevance of long-range interactions in the organization of molecular films. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we employ the state-of-the-art pseudopotential method, within a generalized gradient approximation to the density functional theory, combined with a recently developed method for the calculation of HREELS spectra to study a series of different proposed models for carbon incorporation on the silicon (001) surface. A fully discussion on the geometry, energetics and specially the comparison between experimental and theoretical STM images and electron energy loss spectra indicate that the Si(100)-c(4 x 4) is probably induced by Si-C surface dinners, in agreement with recent experimental findings. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
By using the time-differential perturbed angular correlation technique, the electric field gradients (EFG) at (181)Hf/(181)Ta and (111)In/(111)Cd probe sites in the MoSi(2)-type compound Ti(2)Ag have been measured as a function of temperature in the range from 24 to 1073 K. Ab initio EFG calculations have been performed within the framework of density functional theory using the full-potential augmented plane wave + local orbitals method as implemented in the WIEN2k package. These calculations allowed assignments of the probe lattice sites. For Ta, a single well-defined EFG with very weak temperature dependence was established and attributed to the [4(e)4mm] Ti site. For (111)Cd probes, two of the three measured EFGs are well defined and correlated with substitutional lattice sites, i.e. both the [4(e)4mm] Ti site and the [2(a)4/mmm] Ag site.
Resumo:
The introduction of high-permittivity gate dielectric materials into complementary metal oxide semiconductor technology has reopened the interest in Ge as a channel material mainly due to its high hole mobility. Since HfO(2) and ZrO(2) are two of the most promising dielectric candidates, it is important to investigate if Hf and Zr may diffuse into the Ge channel. Therefore, using ab initio density functional theory calculations, we have studied substitutional and interstitial Hf and Zr impurities in c-Ge, looking for neutral defects. We find that (i) substitutional Zr and Hf defects are energetically more favorable than interstitial defects; (ii) under oxygen-rich conditions, neither Zr nor Hf migration towards the channel is likely to occur; (iii) either under Hf- or Zr-rich conditions it is very likely, particularly for Zr, that defects will be incorporated in the channel.
Resumo:
Several experimental groups have achieved effective n- and p-type doping of silicon nanowires (SiNWs). However, theoretical analyses on ultrathin SiNWs suggest that dopants tend to segregate to their surfaces, where they would combine with defects such as dangling bonds (DB), becoming electronically inactive. Using fully ab initio calculations, we show that the differences in formation energies among surface and core substitutional sites decrease rapidly as the diameters of the wires increase, indicating that the dopants will be uniformly distributed. Moreover, occurrence of the electronically inactive impurity/DB complex rapidly becomes less frequent for NWs of larger diameters. We also show that the high confinement in the ultrathin SiNWs causes the impurity levels to be deeper than in the silicon bulk, but our results indicate that for NWs of diameters larger than approximately 3 nm the impurity levels recover bulk characteristics. Finally, we show that different surfaces will lead to different dopant properties in the gap.
Resumo:
This study reports the results of ab initio electronic and optical calculations for pure socialite crystal using the linear augmented plane wave (LAPW) method within density functional theory (DFT). The calculated electronic structure revealed predominantly orbital characters of the valence band and the conduction band, and enabled us to determine the type and the value of the fundamental gap of the compound. The imaginary part of the dielectric tensor, extinction coefficient and refraction index were calculated as functions of the incident radiation wavelength. It is shown that the O 2p states and Na 3s states play the major role in optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 40 and 250 nm. Furthermore, we concluded that the material does not absorb radiation in the visible range. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Intense violet-blue photoluminescence (PL) emission at room temperature was verified in BaZrO3 (BZO) powders with structural order-disorder. Ab-initio calculations, ultraviolet-visible absorption spectroscopy and PL were performed. Theoretical results showed that the local disorder in the network-formed Zr clusters present an important role in the formation of hole-electron pair. The experimental data and theoretical results are in agreement, indicating that the PL emission in BZO powders can be related to the structural order-disorder degree in the lattice. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The biological effects of chemical substitution of DNA bases triggered several investigations of their physicochemical properties This paper studies the adsorption behavior of a halogenated uracil, 5-fluorouracil (5FU). at the electrochemical interface of Au(111) and sulfuric acid solution. Upon modulation of the electric field across the interface, four distinct phases could be inferred by means of cyclic voltammetry (CV) At negative potentials relative to the SCE electrode, limited by the threshold of hydrogen evolution, no molecular species could be detected by scanning tunneling microscopy (STM) at the reconstructed Au(111)-(23 x root 3) surface, indicating that any physisorbed molecules are randomly distributed Incursion into more positive potentials increases the surface population but doer not form any two-dimensional (2D) physisorbed ordered structure Instead, we observed metastable structures that are only detectable. on surfaces with high defect density At sufficiently high positive potentials. limited by gold oxidation, the molecules are chemisorbed in a (3 x 2 root 3) ordered structure. with the aromatic ring perpendicular to the surface We report the densest chemisorbed monolayer for pyrimidine-derivative molecules (area per molecule 0 14 +/- 0 04 nm(2)). A comparison of the adsorption behavior of uracil derivatives has been made based on recent results of chemical substitution and solvent effects. We propose that pi-stacking is enhanced when halogens are incorporated in the uracil structure, in a similar fashion to what is observed in then crystal structure
Resumo:
In this study, the molecular structure and conformational analyses of the 4-isopropylthioxanthone (4-ITX) are reported according to experimental and theoretical results. The compound crystallizes in the centrosymmetric P (1) over bar space group with only one molecule in the asymmetric unit, presenting the most stable conformation, in which the three fused-rings adopt a planar geometry, and the isopropyl group assumes a torsional angle with less sterical hindrance. The structural and conformational analyses were performed using theoretical calculations such as Hartree-Fock (HF), DFT method in combination with 6-311G(d,p) and 6-31++G(d,p) and the results were compared with infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The supramolecular assembly of 4-ITX is kept by non-classical C-H center dot center dot center dot O hydrogen bonds and weak interactions such as pi-pi stacking. 4-ITX was also studied by (1)H and (13)C NMR spectroscopy. UV-Vis absorption spectroscopic properties of the 4-ITX showed the long-wavelength maximum shifts towards high energy when the solvent polarity increases. (C) 2011 Elsevier B.V. All rights reserved.