973 resultados para Açaí solteiro
Resumo:
Follicle consists of an oocyte and a lot of surrounding follicular cells, and significant interactions exist between the oocyte and the somatic cells. In this study, a novel cDNA has been screened from a subtractive cDNA library between tail bud embryos and blastula embryos in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides). Its full-length cDNA is 821 bp, and has an ORF of 414 by for encoding a peptide of 137 aa, which shows 38%, 37%, 33%, and 33% homology with 4 putative proteins screened from zebrafish (Danio rerio). Conserved domain search in NCBI reveals a single C2 domain existing in the C2 domain superfamily proteins, and has only 7 beta strands in comparison with 8 beta strands of C2 domains in other C2 domain superfamily proteins. Artificial sex reversal, RT-PCR analysis and Western blot detection demonstrated ovary-specific expression of the C2 domain factor, and therefore the novel gene was designated as E. coioides ovary-specific C2 domain factor, EcOC2 factor. Moreover, predominant expression of EcOC2 factor was further revealed in grouper mature ovary, and its strong immunofluorescence signals were located between granulosa cells and oocyte zona radiata in grouper mature follicles. The data indicate that the novel EcOC2 factor might be a main component that associates between granulosa cells and the oocyte during oocyte maturation, and might play significant roles in regulating oocyte maturation and ovulation. Further studies on its developmental behaviour and physiological functions will elucidate the interactions between oocyte and the surrounding somatic cells and the underlying molecular mechanisms. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
In vertebrates, folliculogeneis establishes an intricate system for somatic cell-oocyte interaction, and ultimately leads to the acquisition of their respective competences. Although the formation process and corresponding interactions are strikingly similar in diverse organisms, knowledge of genes and signaling pathways involved in follicle formation is very incomplete and the underlying molecular mechanisms remain enigmatic. CNBP has been identified for more than ten years, and the highest level of CNBP transcripts has been observed in adult zebrafish ovary, but little is known about its functional significance during folliculogeneis and oogenesis. In this study, we clone CNBP cDNA from gibel carp (Carassius auratus gibelio), and demonstrate its predominant expression in gibel carp ovary and testis not only by RTPCR but also by Western blot. Its full-length cDNA is 1402 bp, and has an ORF of 489 nt for encoding a peptide of 163 aa. And its complete amino acid sequence shared 68.5%-96.8% identity with CNBPs from other vertebrates. Based on the expression characterization, we further analyze its expression pattern and developmental behaviour during folliculogeneis and oogenesis. Following these studies, we reveal an unexpected discovery that the CagCNBP is associated with follicular cells and oocytes, and significant distribution changes have occurred in degenerating and regenerating follicles. More interestingly, the CagCNBP is more highly expressed in some clusters of interconnected cells within ovarian cysts, no matter whether the cell clusters are formed from the original primordial germ cells or from the newly formed cells from follicular cells that invaded into the atretic oocytes. It is the first time to reveal CNBP relevance to folliculogeneis and oogenesis. Moreover, a similar stage-specific and cell-specific expression pattern has also been observed in the gibel carp testis. Therefore, further studies on CNBP expression pattern and developmental behaviour will be of significance for understanding functional roles of CNBP during gametogenests. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
There has been much recent interest in engineering the phenomenon of synchronization in coupled micro-/nano-scale oscillators for applications ranging from precision time and frequency references to new approaches to information processing. This paper presents descriptive modelling detail and further experimental validation of the phenomenon of mutual synchronization in coupled MEMS oscillators building upon recent experimental validation of this concept by the present authors. In particular, the underlying dependence of the observation of synchronization on system parameters is studied through numerical and analytical modelling while considering essential nonlinearities in both the resonator and circuit domain. Experimental results demonstrating synchronized response are elaborated based on the realization of electrically coupled MEMS resonator based square-wave oscillators. The experimental results on frequency entrainment are found to be in general agreement with results obtained through analytical modeling and numerical simulation. The concept presented here is scalable and could be used to investigate the dynamics of large-arrays of coupled MEMS oscillators. © 2014 AIP Publishing LLC.
Resumo:
A vibration energy harvester designed to access parametric resonance can potentially outperform the conventional direct resonant approach in terms of power output achievable given the same drive acceleration. Although linear damping does not limit the resonant growth of parametric resonance, a damping dependent initiation threshold amplitude exists and limits its onset. Design approaches have been explored in this paper to passively overcome this limitation in order to practically realize and exploit the potential advantages. Two distinct design routes have been explored, namely an intrinsically lower threshold through a pendulum-lever configuration and amplification of base excitation fed into the parametric resonator through a cantilever-initial-spring configuration. Experimental results of the parametric resonant harvesters with these additional enabling designs demonstrated an initiation threshold up to an order of magnitude lower than otherwise, while attaining a much higher power peak than direct resonance. © 2014 IOP Publishing Ltd.
Resumo:
A SMART cDNA plasmid library was constructed from protogyous greasy grouper (Epinephelus coioides) pituitary, and the full-length cDNAs of three gonadotropin (GTH) subunits common alpha, FSH beta and LH beta were cloned and sequenced from the library. The nucleotide sequences of common alpha, FSH beta and LH beta subunit cDNAs are 647, 594 and 574 bp in length, and encode for mature peptides of 94, 99 and 115 aa, respectively. High homology was observed by amino acid sequence alignment and identity comparison of the grouper mature peptides of common alpha, FSH beta and LH beta with that of other fishes. Phylogenetic tree analyses of the three GTH mature subunits revealed similar phylogeny relationships among the studied fish species. Three polyclonal antibodies were prepared from the in vitro expressed common alpha, FSH beta and LH beta mature proteins, respectively. Western blot analysis and immunofluoresence localization were performed on two typical stages of ovarian development stages in red-spotted grouper. Significant differences in protein expression levels of three gonadotropin subunits were revealed between the two ovarian development stages. In the individuals with resting ovary, common alpha was almost not detected in pituitaries, and FSH beta and LH beta expression levels were very low. While in the individuals with developing ovary, the expression of all three gonadotropin subunits reached to a high level. Immunofluoresence localization indicated that the grouper FSH beta cells mainly distributed in the middle area of PPD, while the LH beta cells distributed more widely, including in the area similar to the FSH beta cells and at the external periphery of pituitary near to the PI side. The common alpha might be expressed in both FSH beta and LH beta cells. Double immunofluoresence localization further demonstrated FSH beta and LH beta expression in distinct cells in the PPD area, although the FSH beta and LH beta cells were detected in the identical area of PPD. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In order to identify genes encoding the outer membrane proteins (OMPs) of the myxobacter Flavobacterium columnare G(4), the expression library of the bacterium was screened by using rabbit antisera developed against its OMPs. Positive colonies of Escherichia coli M15 containing fragments encoding the bacterial OMPs were selected for cloning the relevant genes by genomic walking methods. Two genes encoding a membrane-associated zinc metalloprotease and prolyl oligopeptidase are reported in this paper. The membrane-associated zinc metalloprotease gene (map) is 1800 bp in length, coding for 449 amino acids (aa). Despite the presence of a conserved motif HEXXH for all metalloproteases, the special HEXXH similar to 32 aa similar to E motif of the F. columnare G(4) Map and its low level of identity with other reported zinc-containing metalloproteases may imply that the membrane-associated zinc metalloprotease of F. columnare G(4) represents a new family of zincins. The gene encoding prolyl oligopeptidase (Pop), a serine proteinase, is 2352 bp in length, coding for 649 aa. Sequence homology analysis revealed that the Pop is also novel as it has <50% identity with other reported prolyl oligopeptidase family proteins. The present study represents the first to employ anti-fish bacterial OMP sera to screen genes of membrane-associated proteases of fish pathogenic bacteria, and to provide necessary information for the examination of the role of the two genes in the infection and pathogenesis of F. columnare.
Resumo:
The sequences and gene organisation of two LEAP-2 molecules (LEAP-2A and LEAP-2B) from rainbow trout, Oncorhynchus mykiss are presented. Both genes consist of a 3 exon/2 intron structure, with exon sizes comparable to known mammalian genes. LEAP-2A notably differs from LEAP-2B in having larger introns and a larger 3'UTR. The predicted proteins contain a signal peptide and prodomain, followed by a mature peptide of 41 aa containing four conserved cysteines. The RXXR cleavage site to release the mature peptide was also conserved. Both genes were found to be constitutively expressed in the liver, with expression in the intestine, and to a lesser extent the skin, evident after bacterial challenge. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A putative chitinase gene was identified within the fragment EcoRI-K of the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HearNPV, also called HaSNPIV) genome. The open reading frame (ORF) contains 1713 nucleotides (nt) and encodes a protein of 570 amino acids (aa) with a predicted molecular weight of 63.6 kDa. Transcription started at about 18 h post infection (p.i.) and the protein was first detected at 20 h p.i. The times of transcription and expression are characteristic of a late baculovirus gene. 5' and 3' RACE indicated that transcription was initiated from the adenine residue located at -246 nt upstream from the ATG start site and the poly (A) tail was added at 267 nt downstream from the stop codon. This is the first report on the molecular characterization of a chitinase from a single nucleocapsid NPV. The phylogeny of baculoviral chitinase genes were extensively examined in comparison with chitinases derived from bacteria, fungi, nematode, actinomycetes, viruses, insects and mammals. Neighbor-joining and most parsimony analyses showed that the baculoviral chitinases were clustered exclusively within gamma-proteobacteria. Our results strongly suggest that baculoviruses acquired their chitinase genes from bacteria. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Type I interferon (IFN) exerts its pleiotropic effects mainly through the JAK-STAT signaling pathway, which is presently best described in mammals. By subtractive suppression hybridization, two fish signaling factors, JAK1 and STAT1, had been identified in the IFN-induced crucian carp Carassius auratus L. blastulae embryonic (CAB) cells after treatment with UV-inactivated grass carp hemorrhagic virus (GCHV). Further, the full-length cDNA of STAT1, termed CaSTAT1, was obtained. It contains 2926 bp and encodes a protein of 718 aa. CaSTAT1 is most similar to rat STAT1 with 59% identity overall and displays all highly conserved domains that the STAT family possesses. Like human STAT1beta, it lacks the C-terminus acting as transcriptional activation domain in mammals. By contrast, only a single transcript was detected in virus-induced CAB cells. Expression analysis showed that CaSTAT1 could be activated by stimulation of CAB cells with poly I:C, active GCHV, UV-inactivated GCHV or CAB IFN, and displayed diverse expression patterns similar to that of mammalian STATI. Additionally, the expression of an antiviral gene CaMx1 was also induced under the same conditions, and expression difference between CaSTAT1 and CaMx1 was revealed by induction of CAB IFN. These results provide molecular evidence supporting the notion that the fish IFN signaling transduction pathway is similar to that in mammals. Fish IFN exerts its multiple functions, at least antiviral action, through a JAK-STAT pathway. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The symmetry group analysis is applied to classify the phonon modes of N-stacked graphene layers (NSGLs) with AB and AA stacking, particularly their infrared and Raman properties. The dispersions of various phonon modes are calculated in a multilayer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the interlayer interactions in NSGLs. The experimentally reported redshift phenomena in the layer-number dependence of the intralayer optical C-C stretching mode frequencies are interpreted. An interesting low-frequency interlayer optical mode is revealed to be Raman or infrared active in even or odd NSGLs, respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.
Resumo:
We study the optimal teleportation based on Bell measurements via the thermal states of a two-qubit Heisenberg XXX chain in the presence of the Dzyaloshinsky-Moriya (DM) anisotropic antisymmetric interaction and obtain an optimal unitary transformation. The explicit expressions of the output state and the teleportation fidelity are presented and compared with those of the standard protocol. It is shown that in this protocol the teleportation fidelity is always larger and the unit fidelity is achieved at zero temperature. The DM interaction can enhance the teleportation fidelity at finite temperatures, as opposed to the effect of the interaction in the standard protocol. Cases with other types of anisotropies are also discussed. Copyright (C) EPLA, 2009
Resumo:
The biaxial piezospectroscopic coefficient (i.e., the rate of spectral shift with stress) of the electrostimulated near-band-gap luminescence of gallium nitride (GaN) was determined as Pi=-25.8 +/- 0.2 meV/GPa. A controlled biaxial stress field was applied on a hexagonal GaN film, epitaxially grown on (0001) sapphire using a ball-on-ring biaxial bending jig, and the spectral shift of the electrostimulated near-band-gap was measured in situ in the scanning electron microscope. This calibration method can be useful to overcome the lack of a bulk crystal of relatively large size for more conventional uniaxial bending calibrations, which has so far hampered the precise determination of the piezospectroscopic coefficient of GaN. The main source of error involved with the present calibration method is represented by the selection of appropriate values for the elastic stiffness constants of both film and substrate. The ball-on-ring calibration method can be generally applied to directly determine the biaxial-stress dependence of selected cathodoluminescence bands of epilayer/substrate materials without requiring separation of the film from the substrate. (c) 2006 American Institute of Physics.