964 resultados para 750 Painting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report Si-isotopic compositions of 75 sedimentologically and petrographically characterized chert samples with ages ranging from similar to 2600 to 750 Ma using multi-collector inductively coupled plasma mass spectrometry. delta Si-30 values of the cherts analyzed in this study show a similar to 7 parts per thousand range, from -4.29 to +2.85. This variability can be explained in part by (1) simple mixing of silica derived from continental (higher delta Si-30) and hydrothermal (lower delta Si-30) sources, (2) multiple mechanisms of silica precipitation and (3) Rayleigh-type fractionations within pore waters of individual basins. We observe similar to 3 parts per thousand variation in peritidal cherts from a single Neoproterozoic sedimentary basin (Spitsbergen). This variation can be explained by Rayleigh-type fractionation during precipitation from silica-saturated porewaters. In some samples, post-dissolution and reprecipitation of silica could have added to this effect. Our data also indicate that peritidal cherts are enriched in the heavier isotopes of Si whereas basinal cherts associated with banded iron formations (BIF) show lower delta Si-30. This difference could partly be due to Si being derived from hydrothermal sources in BIFs. We postulate that the difference in delta Si-30 between non-BIF and BIF cherts is consistent with the contrasting genesis of these deposits. Low delta Si-30 in BIF is consistent with laboratory experiments showing that silica adsorbed onto Fe-hydroxide particles preferentially incorporates lighter Si isotopes. Despite large intrabasinal variation and environmental differences, the data show a clear pattern of secular variation. Low delta Si-30 in Archean cherts is consistent with a dominantly hydrothermal source of silica to the oceans at that time. The monotonically increasing delta Si-30 from 3.8 to 1.5 Ga appears to reflect a general increase in continental versus hydrothermal sources of Si in seawater, as well as the preferential removal of lighter Si isotopes during silica precipitation in iron-associated cherts from silica-saturated seawater. The highest delta Si-30 values are observed in 1.5 Ga peritidal cherts; in part, these enriched values could reflect increasing sequestration of light silica during soil-forming processes, thus, delivering relatively heavy dissolved silica to the oceans from continental sources. The causes behind the reversal in trend towards lower delta Si-30 in cherts younger than 1.5 Ga old are less clear. Cherts deposited 1800-1900 Ma are especially low delta Si-30, a possible indication of transiently strong hydrothermal input at this time. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nano sized copper chromite, which is used as a burn rate accelerator for solid propellants, was synthesized by the solution combustion process using citric acid and glycine as fuel. Pure spinel phase copper chromite (CuCr2O4) was synthesized, and the effect of different ratios of Cu-Cr ions in the initial reactant and various calcination temperatures on the final properties of the material were examined. The reaction time for the synthesis with glycine was lower compared to that with citric acid. The synthesized samples from both fuel cycles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area analysis, and scanning electron microscope (SEM). Commercial copper chromite that is currently used in solid propellant formulation was also characterized by the same techniques. XRD analysis shows that the pure spinel phase compound is formed by calcination at 700 degrees C for glycine fuel cycle and between 750 and 800 degrees C for citric acid cycle. XPS results indicate the variation of the oxidation state of copper in the final compound with a change in the Cu-Cr mole ratio. SEM images confirm the formation of nano size spherical shape particles. The variation of BET surface area with calcination temperature was studied for the solution combusted catalyst. Burn rate evaluation of synthesized catalyst was carried out and compared with the commercial catalyst. The comparison between BET surface area and the burn rate depicts that surface area difference caused the variation in burn rate between samples. The reason behind the reduction in surface area and the required modifications in the process are also described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes VO(pyphen)(L)]Cl2 (1, 2) and VO(pydppz)(L)]Cl2 (3, 4), where L is 1,10-phenanthroline (phen in 1 and 3) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4) are prepared and characterized. The crystal structure of VO(pyphen)(phen)](ClO4)2 (1a) shows a six-coordinate VN5O geometry with a VO2+ moiety in which the polypyridyl ligand binds in a meridional fashion and the phen ligand displays a chelating binding mode with an N-donor site trans to the oxidovanadyl group. The complexes show a dd band within 720-750 nm in DMF. The one-electron paramagnetic complexes are 1:2 electrolytes in DMF. The complexes exhibit an irreversible VIV/VIII redox response near -0.85 V vs. SCE in DMF/0.1 M TBAP. The complexes bind to calf thymus (ct) DNA giving Kb values within 7.5 x 104 to 1.1 x 106 M1. The complexes show poor chemical nuclease activity in the dark and exhibit significant DNA-photocleaving activity in near-IR light of 705 and 785 nm forming .OH radicals. Complexes 2-4 show remarkable photocytotoxicity in HeLa cancer cells. FACS analysis of the HeLa cells treated with complex 4 shows cell death as highlighted by the sub G1 peak. Propidium iodide staining data indicate apoptosis as the primary mode of cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different pre-aging treatments on the microstructural evolution of lead-free solder and growth of interfacial intermetallic compound layers under thermal cycling has been investigated in this work. The results show that there are distinct differences in the microstructural changes between samples with no pretreatment, samples that have experienced thermal annealing at 125A degrees C for 750 h before thermal cycling, and those that have had direct current (DC) stressing for 750 h as pretreatment. The microstructural evolution of the solder matrix is rationalized by utilizing the science of microstructures and analysis of the influence of electron flow on the precipitation phenomena. The finite-element method is utilized to understand the loading conditions imposed on the solder interconnections during cyclic stressing. The growth of intermetallic reaction layers is further analyzed by utilizing quantitative thermodynamic calculations coupled with kinetic analysis. The latter is based on the changes in the intrinsic diffusion fluxes of elements induced by current flow and alloying elements present in the system. With this concurrent approach the differences seen in thermal cycling behavior between the different pre-aging treatments can be explained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyrenylterpyridine (pytpy) oxovanadium(IV) complexes VO(pytpy)(L)]Cl-2 (1-6) of the dipyridophenazine bases (L), viz., dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido3,2-a:2',3'-c]phenazine (dppza in 4), benzo-i]dipyrido3,2-a:2',3'-c]phenazine (dppn in 5) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 6) were prepared, characterized and their DNA binding, photocleavage activity and photocytotoxicity studied. The complexes which showed a d-d band near 750 nm in DMF are efficient binders to calf thymus DNA (K-b: 3.2 x 10(5)-2.9 x 10(6) M-1). The complexes showed significant pUC19 DNA cleavage in near-IR light of 785 nm forming center dot OH radicals and photocytotoxicity in HeLa cells in visible light with the benzo-i] dipyrido3,2-a:2',3'-c]phenazine complex 5 showing a remarkably low IC50 value of 0.036 mu M. Flow-cytometric analysis shows a high sub-G1 phase cell cycle arrest in HeLa cells by the complexes on photo-irradiation. The photocytotoxicity correlates well with the hydrophobicity, photosensitizing ability and DNA binding propensity of the complexes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Void filling in (I) Bi-x-added Co4Sb12 or (II) Sb/Bi substitution of Co4Sb12-xBix has been investigated for structural and thermoelectric properties evaluation. X-ray powder data Rietveld refinements combined with electron probe microanalyses showed a polycrystalline and practically Bi-free CoSb3 skutterudite phase as the major constituent as well as a secondary Bi phase in the grain boundaries. For series I alloys, the electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature in the range from 450 to 750 K. The electrical conductivity of all the samples increased with increasing temperature, showing a semiconducting nature with smaller values of the Seebeck coefficient for higher Bi fractions. Conduction over the entire temperature range was found to arise from a single p-type carrier. Thermal conductivity showed a reduction with Bi added in all the samples, except for Bi0.75Co4Sb12, and the lowest lattice thermal conductivity was found for a Bi-added fraction of 0.5. The maximum zT value of 0.53 at 632 K is higher than that of Co4Sb12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of alumina (Al2O3) were deposited over Si < 1 0 0 > substrates at room temperature at an oxygen gas pressure of 0.03 Pa and sputtering power of 60 W using DC reactive magnetron sputtering. The composition of the as-deposited film was analyzed by X-ray photoelectron spectroscopy and the O/Al atomic ratio was found to be 1.72. The films were then annealed in vacuum to 350, 550 and 750 degrees C and X-ray diffraction results revealed that both as-deposited and post deposition annealed films were amorphous. The surface morphology and topography of the films was studied using scanning electron microscopy and atomic force microscopy, respectively. A progressive decrease in the root mean square (RMS) roughness of the films from 1.53 nm to 0.7 nm was observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on p-type Si < 1 0 0 > substrate to study the effect of temperature and frequency on the dielectric property of the films and the results are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report the gas phase infrared spectra of fluorene and its methylated derivatives using a heated multipass cell and argon as a carrier gas. The observed spectra in the 4000-400 cm(-1) range have been fitted using the modified scaled quantum mechanical force field (SQMFF) calculation with the 6-311G** basis. The advantage of using the modified SQMFF method is that it scales the force constants to find the best fit to the observed spectral lines by minimizing the fitting error. In this way we are able to assign all the observed fundamental bands in the spectra. With consecutive methyl substitutions two sets of bands are found to shift in a systematic way. The set of four aromatic C-H stretching vibrations around 3000 cm(-1) shifts toward lower frequencies while the single most intense aromatic C-H out-of-plane bending mode around 750 cm(-1) shifts toward higher frequencies. The reason for shifting of aromatic C-H stretching frequency toward lower wave numbers with gradual methyl substitution has been attributed to the lengthening of the C-H bonds due to the +I effect of the methyl groups to the ring current as revealed from the calculations. While the unexpected shifting of the aromatic C-H out-of-plane bend toward higher wave numbers with increasing methyl substitution is ascribed to the lowering of the number of adjacent aromatic C-H bonds on the plane of the benzene ring with gradual methyl substitutions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, high strength bulk ultrafine-grained titanium alloy Ti-6Al-4V bars were successfully processed using multi-pass warm rolling. Ti-6Al-4V bars of 12 mm diameter and several metres long were processed by multi-pass warm rolling at 650 degrees C, 700 degrees C and 750 degrees C. The highest achieved mechanical properties for Ti-6Al-4V in as rolled condition were yield strength 1191 MPa, ultimate tensile strength of 1299 MPa having an elongation of 10% when the rolling temperature was 650 degrees C. The concurrent evolution of microstructure and texture has been studied using optical microscopy, electron back scattered diffraction and x-ray diffraction. The significant improvement in mechanical properties has been attributed to the ultrafine-grained microstructure as well as the morphology of alpha and beta phases in the warm rolled specimens. The warm rolling of Ti-6Al-4V leads to formation of < 10 (1) over bar0 >alpha//RD fibre texture. This study shows that multi-pass warm rolling has potential to eliminate the costly and time consuming heat treatment steps for small diameter bar products, as the solution treated and aged (STA) properties are achievable in the as rolled condition itself. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report detailed evidence for a new paleo-suture zone (the Kumta suture) on the western margin of southern India. The c. 15-km-wide, westward dipping suture zone contains garnet-biotite, fuchsite-haematite, chlorite-quartz, quartz-phengite schists, biotite augen gneiss, marble and amphibolite. The isochemical phase diagram estimations and the high-Si phengite composition of quartz-phengite schist suggest a near-peak condition of c. 18 kbar at c. 550 degrees C, followed by near-isothermal decompression. The detrital SHRIMP U-Pb zircon ages from quartz-phengite schist give four age populations ranging from 3280 to 2993 Ma. Phengite from quartz-phengite schist and biotite from garnet-biotite schist have K-Ar metamorphic ages of ca. 1326 and ca. 1385 Ma respectively. Electron microprobe-CHIME ages of in situ zircons in quartz-phengite schist (ca. 3750 Ma and ca. 1697 Ma) are consistent with the above results. The Bondla ultramafic-gabbro complex in the west of the Kumta suture compositionally represents an arc with K-Ar biotite ages from gabbro in the range 1644-1536 Ma. On the eastern side of the suture are weakly deformed and unmetamorphosed shallow westward-dipping sedimentary rocks of the Sirsi shelf, which has the following upward stratigraphy: pebbly quartzite/sandstone, turbidite, magnetite iron formation, and limestone; farther east the lower lying quartzite has an unconformable contact with ca. 2571 Ma quartzo-feldspathic gneisses of the Dharwar block with a ca. 1733 Ma biotite cooling age. To the west of the suture is a c. 60-km-wide Karwar block mainly consisting of tonalite-trondhjemite-granodiorite (TTG) and amphibolite. The TTGs have U-Pb zircon magmatic ages of ca. 3200 Ma with a rare inherited core age of ca. 3601 Ma. The K-Ar biotite cooling age from the TTGs (1746 Ma and 1796 Ma) and amphibolite (ca. 1697 Ma) represents late-stage uplift. Integration of geological, structural and geochronological data from western India and eastern Madagascar suggest diachronous ocean closure during the amalgamation of Rodinia; in the north at around ca. 1380 Ma, and a progression toward the south until ca. 750 Ma. Satellite imagery based regional structural lineaments suggests that the Betsimisaraka suture continues into western India as the Kumta suture and possibly farther south toward a suture in the Coorg area, representing in total a c. 1000 km long Rodinian suture. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of 3 wt% Cu to heat-resistant SUS 304H austenitic steel enhances its high temperature mechanical properties. To further improve the properties, particularly the creep resistance and ductility at high temperatures, a post-solutionizing heat-treatment method that involves an intermediated annealing either at 700 or 800 degrees C after solutionizing for durations up to 180 min was employed. The purpose this heat-treatment is to precipitate planar Cr23C6 at the grain boundaries, which results in the boundaries getting serrated. Detailed microstructural analyses of these `grain boundary engineered' alloys was conducted and their mechanical performance, both at room temperature and at 750 degrees C, was evaluated. While the grain size and texture are unaffected due to the high temperature hold, the volume fraction of Sigma 3 twin boundaries was found to increase significantly. While the strength enhancement was only marginal, the ductility was found to increase significantly, especially at high temperature. A marked increase in the creep resistance was also noted, which is attributed to the reduction of the grain boundary sliding by the grain boundary serrations and the suppression of grain boundary cavitation through the optimization of the volume fraction and spacing of the Cr23C6 precipitates. The special heat-treatment performed with holding time of 3 h at 700 degrees C resulted in the optimum combination of strength, ductility and creep resistance at high temperature. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead-tin-telluride is a well-known thermoelectric material in the temperature range 350-750 K. Here, this alloy doped with manganese (Pb0.96-yMn0.04SnyTe) was prepared for different amounts of tin. X-ray diffraction showed a decrease of the lattice constant with increasing tin content, which indicated solid solution formation. Microstructural analysis showed a wide distribution of grain sizes from <1 mu m to 10 mm and the presence of a SnTe rich phase. All the transport properties were measured in the range of 300-720 K. The Seebeck coefficient showed that all the samples were p-type indicating holes as dominant carriers in the measurement range. The magnitude increased systematically on reduction of the Sn content due to possible decreasing hole concentration. Electrical conductivity showed the degenerate nature of the samples. Large values of the electrical conductivity could have possibly resulted from a large hole concentration due to a high Sn content and secondly, due to increased mobility by sp-d orbital interaction between the Pb1-ySnyTe sublattice and the Mn2+ ions. High thermal conductivity was observed due to higher electronic contribution, which decreased systematically with decreasing Sn content. The highest zT = 0.82 at 720 K was obtained for the alloy with the lowest Sn content (y = 0.56) due to the optimum doping level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An AlCrCuNiFeCo high entropy alloy (HEA), which has simple face centered cubic (FCC) and body centered cubic (BCC) solid solution phases as the microstructural constituents, was processed and its high temperature deformation behaviour was examined as a function of temperature (700-1030 degrees C) and strain rate (10(-3)-10(-1) s(-1)), so as to identify the optimum thermo-mechanical processing (TMP) conditions for hot working of this alloy. For this purpose, power dissipation efficiency and deformation instability maps utilizing that the dynamic materials model pioneered by Prasad and co-workers have been generated and examined. Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate two distinct deformation domains within the range of experimental conditions examined, with the combination of 1000 degrees C/10(-3) s(-1) and 1030 degrees C/10(-2) s(-1) being the optimum for hot working. Flow instabilities associated with adiabatic shear banding, or localized plastic flow, and or cracking were found for 700-730 degrees C/10(-3)-10(-1) s(-1) and 750-860 degrees C/10(-1.4)-10(-1) s(-1) combinations. A constitutive equation that describes the flow stress of AlCrCuNiFeCo alloy as a function of strain rate and deformation temperature was also determined. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results. (C) 2015 American Association of Physicists in Medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.