990 resultados para 7140-106
Resumo:
In the complex Ginzburg-Landau equation, we consider possible ''phase turbulent'' regimes, where asymptotic correlations are controlled by phase fluctuations rather than by topological defects. Conjecturing that the decay of such correlations is governed by the Kardar-Parisi-Zhang (KPZ) model of growing interfaces, we derive the following results: (1) A scaling ansatz implies that equal-time spatial correlations in 1d, 2d, and 3d decay like e(-Ax2 zeta), where A is a nonuniversal constant, and zeta=1/2 in 1d. (2) Temporal correlations decay as exp(-t(2 beta)h(t/L(z))), with the scaling law <(beta)over bar> = <(zeta)over bar>/z, where z = 3/2, 1.58..., and 1.66..., for d = 1,2, and 3 respectively. The scaling function h(y) approaches a constant as y --> 0, and behaves like y(2(beta-<(beta)over bar>)), for large y. If in 3d the associated KPZ model turns out to be in its weak-coupling (''smooth'') phase, then, instead of the above behavior, the CGLE exhibits rotating long-range order whose connected correlations decay like 1/x in space or 1/t(1/2) in time. (3) For system sizes, L, and times t respectively less than a crossover length, L(c), and time, t(c), correlations are governed by the free-field or Edwards-Wilkinson (EW) equation, rather than the KPZ model. In 1d, we find that L(c) is large: L(c) similar to 35,000; for L < L(c) we show numerical evidence for stretched exponential decay of temporal correlations with an exponent consistent with the EW value beta(EW)= 1/4.
Resumo:
The distributed implementation of an algorithm for computing fixed points of an infinity-nonexpansive map is shown to converge to the set of fixed points under very general conditions.
Resumo:
Sequential addition of vanadyl sulfate to a phosphate-buffered solution of H2O2 released oxygen only after the second batch of vanadyl. Ethanol added to such reaction mixtures progressively decreased oxygen release and increased oxygen consumption during oxidation of vanadyl by H2O2. Inclusion of ethanol after any of the three batches of vanadyl resulted in varying amounts of oxygen consumption, a property also shared by other alcohols (methanol, propanol and octanol). On increasing the concentration of ethanol, vanadyl sulfate or H2O2, both oxygen consumption and acetaldehyde formation increased progressively. Formation of acetaldehyde decreased with increase in the ratio of vanadyl:H2O2 above 2:1 and was undetectable with ethanol at 0.1 mM. The reaction mixture which was acidic in the absence of phosphate buffer (pH 7.0), released oxygen immediately after the first addition of vanadyl and also in presence of ethanol soon after initial rapid consumption of oxygen, with no accompanying acetaldehyde formation. The results underscore the importance of some vanadium complexes formed during vanadyl oxidation in the accompanying oxygen-transfer reactions.
Resumo:
In this paper, we propose a novel dexterous technique for fast and accurate recognition of online handwritten Kannada and Tamil characters. Based on the primary classifier output and prior knowledge, the best classifier is chosen from set of three classifiers for second stage classification. Prior knowledge is obtained through analysis of the confusion matrix of primary classifier which helped in identifying the multiple sets of confused characters. Further, studies were carried out to check the performance of secondary classifiers in disambiguating among the confusion sets. Using this technique we have achieved an average accuracy of 92.6% for Kannada characters on the MILE lab dataset and 90.2% for Tamil characters on the HP Labs dataset.
Resumo:
Diastereomers (SRu,Sc)-1a and (RRu,Sc)-1b, in a ratio of 85: 15 and formulated as [Ru(η-MeC6H4Pri-p)Cl(L*)], have been prepared by treating [{Ru(η-MeC6H4Pri-p)Cl2}2] with the sodium salt of (S)-α-methylbenzylsalicylaldimine (HL*) in tetrahydrofuran at –70 °C. The reaction of 1(1a+1b) with AgClO4 in acetone followed by an addition of PPh3 or 4-methylpyridine (4Me-py) leads to the formation of adducts [Ru(η-MeC6H4Pri-p)(PPh3)(L*)]ClO42[(SRu,Sc)2a, (FRu,Sc)2b] and [Ru(η-MeC6H4Pri-p)(4Me-py)(L*)]ClO43[(SRu,Sc)3a, (RRu,Sc)3b] in the diastereomeric ratios (SRu,Sc) : (RRu,Sc) of 2 : 98 and 76 : 24, respectively. Complex 1 crystallises with equal numbers of 1a and 1b molecules in an asymmetric unit of monoclinic space group P21 with a= 10.854(1), b= 17.090(1), c= 12.808(4)Å, β= 110.51(1)°, and Z= 4. The structure was refined to R= 0.0552 and R′= 0.0530 with 2893 reflections having I[gt-or-equal] 1.5σ(I). The absolute configurations of the chiral centres in the optically pure single crystal of the PPh3 adduct have been obtained from an X-ray study. Crystals of formulation [Ru(η-MeC6H4Pri-p)-(PPh3)(L*)]2[ClO4][PF6]·1.5 CHCl3, obtained in presence of both ClO4 and PF6 anions, belong to the non-centric triclinic space group P1 with a= 10.852(2), b= 14.028(1), c= 15.950(2)Å, α= 91.51(1), β= 105.97(1), γ= 106.11(1)°, and Z= 2. The final residuals were R= 0.0713, R′= 0.0752 with 7283 reflections having I[gt-or-equal] 2.5σ(I). The crystal structures of 1a,1b, and the PPh3 adduct (2b,2b′) consist of a ruthenium(II) centre bonded to a η-p-cymene, a bidentate chelating Schiff base, and a unidentate ligand (Cl or PPh3). The chirooptical properties of the complexes have been studied using 1H NMR and CD spectral data. The presence of a low-energy barrier for the intermediate involved in these reactions, showing both retention as well as inversion of the metal configuration, is discussed.
Resumo:
We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c = 0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.
Resumo:
Carbon fibres/particles can be satisfactory reinforcing material in polymer, ceramic and metal matrices. Carbon fibres/particles reinforced polymer matrix composites and ceramic matrix composites are being used extensively in critical areas of application, but carbon fibre - metal matrix composites have not reached that stage yet. This paper discusses the salient aspects of production and specific properties of carbon fibre/particle reinforced cast metal matrix composites. It is envisaged that these materials will find extensive applications where cost, weight and thermal expansion are the key factors.
Resumo:
The rhesus monkey Macaca mulatta and Hanuman langur Presbytis entellus are distributed all over the State of Himachal Pradesh, India. Although both species inhabit forested areas, only rhesus monkeys seem also to have become urbanized. There are about 200,000 rhesus monkeys and 120,000 Hanuman langurs. A three-year survey at Shimla showed an increasing trend in their populations. Potential threats to survival of these primates differ in the 12 districts. The two species differ in feeding and habitat preferences. People's feelings, perceptions and attitudes reward them point to an incipient man-monkey conflict and erosion of conservation ethics. A comprehensive management plan for these primates should be formulated, and involve local people. Copyright (C) 1996 Elsevier Science Limited
Resumo:
Sufficiently long molecular dynamics simulations have been carried out on spherical monatomic sorbates in NaY zeolite, interacting via simple Lennard-Jones potentials, to investigate the dependence of the levitation effect on the temperature. Simulations carried out in the range 100-300 K suggest that the anomalous peak in the diffusion coefficient (observed when the levitation parameter, gamma, is near unity) decreases in intensity with increase in temperature. The rate of cage-to-cage migrations also exhibits a similar trend. The activation energy obtained from Arrhenius plots is found to exhibit a minimum when the diffusion coefficient is a maximum, corresponding to the gamma approximate to 1 sorbate diameter. In the linear or normal regime, the activation energy increases with increase in sorbate diameter until it shows a sharp decrease in the anomalous regime. Locations and energies of the adsorption sites and their dependence on the sorbate size gives interesting insight into the nature of the underlying potential-energy surface and further explain the observed trend in the activation energy with sorbate size. Cage residence times, tau(c), show little or no change with temperature for the sorbate with diameter corresponding to gamma approximate to 1, whereas there is a significant decrease in tau(c) with increase in temperature for sorbates in the linear regime. The implications of the present study for the separation of mixtures of sorbates are discussed.
Resumo:
3,6-Dibromo-N-ethylcarbazole (DBNEC) and its polymeric analogue poly-3,6-dibromovinylcarbazole (PDBVCz) were studied by transient absorption spectroscopy. The transient absorption spectrum of the 3,6-dibromo-N-ethylcarbazole radical cation and decay rate constants of radical cations of 3,6-dibromo-N-ethylcarbazole and its polymeric analogue are presented. In the case of unsubstituted carbazole, the ratio of the yield of radical cation of monomer to polymer is 2.0, whereas in the case of PDBVCz, under the same experimental conditions, the yield of the radical cation is an order of magnitude less in comparison with the monomer model compound DBNEC. This drastic difference in yield has been correlated to the difference in the conformational structure of the polymer as evidenced by nuclear magnetic resonance spectroscopy. (C) 1997 Elsevier Science S.A.
Resumo:
The coordinating behavior of a new dihydrazone ligand, 2,6-bis(3-methoxysalicylidene) hydrazinocarbonyl]pyridine towards manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) has been described. The metal complexes were characterized by magnetic moments, conductivity measurements, spectral (IR, NMR, UV-Vis, FAB-Mass and EPR) and thermal studies. The ligand crystallizes in triclinic system, space group P-1, with alpha=98.491(10)degrees, beta=110.820(10)degrees and gamma=92.228(10)degrees. The cell dimensions are a=10.196(7)angstrom, b=10.814(7)angstrom, c=10.017(7)angstrom, Z=2 and V=1117.4(12). IR spectral studies reveal the nonadentate behavior of the ligand. All the complexes are neutral in nature and possess six-coordinate geometry around each metal center. The X-band EPR spectra of copper(II) complex at both room temperature and liquid nitrogen temperature showed unresolved broad signals with g(iso) = 2.106. Cyclic voltametric studies of copper(II) complex at different scan rates reveal that all the reaction occurring are irreversible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A series of bile acid-based crown ethers (7a-c,12 and 13) were easily constructed from readily available precursors. Measurement of association constants (K-a) with alkali metal picrates in CHCl3 showed that azacrown ethers 7a-c and Chola-Cuowns 12 and 13 show greater binding towards Rb+ and K+. The presence of the aromatic moieties showed subtle changes in the binding properties. Insight II minimized structures show very different conformations of aromatic units in 7a-b and 13.
Resumo:
Control surface effectiveness is an important parameter for any aeroplane. For a hypersonic aircraft, though the power required to operate the flaps is determined by low speed flying conditions, it is imperative to know the effect of flaps at hypersonic speeds. Hence, studies have been done on this topic by aerodynamicists for over 40 years. In spite of this, only a limited data is available in the literature on this subject. This paper discusses the experimental study of the effect of sweep on the aerodynamic characteristics of thin slab delta wings with flaps at hypersonic speeds. For the purpose of this investigation, a novel special thin six-component balance, which has a thickness of 4mm and can be housed inside wings with 8mm thickness, has been designed. The wings had a sweep of 76degrees, 70degrees and 65degrees, t/c of 0.053 and flaps with 12% of wing area and 12% of wing chord. Testing were done at Mach 8.2, Re number of 2.13 x 10(6) (based on chord), from alpha = -12degrees to 12degrees and flap angle of 20degrees, 30degrees and 40degrees. Separation lengths, measured from Schlieren pictures, clearly show that there is 'no appreciable' effect of sweep on them. Also, using a simple local flow field calculation, the separation has been identified to be transitional in nature. These features of separation reflect in the force data. Because of the small separation length, the flaps (inspite of their small size) were very effective in generating additional C-N, C-M and C-l, which increased with increase in flap angle. In general, the C-N, C-M and X-CP were unaffected by sweep for symmetric flap deflection at positive incidences and asymmetric flap case, For symmetric flap case at negative incidences, only C-N was not influenced by the sweep but C-M decreased and X-CP moved upstream as the sweep is decreased, The wing with lower sweep produces higher CA and lower (L/D)(max) for both symmetric and asymmetric flaps. The rolling moment and adverse yaw increased with decrease in sweep for asymmetric flap deflection. Newtonian theory is shown to be incapable of predicting the effect of sweep on C-l, C-n and on the incremental values of C-N, C-M and C-A. In conclusion, it can be said that a small flap is generally adequate for hypersonic aeroplanes provided they operate at altitudes where transitional and turbulent separation can be expected to occur. This would make the flaps effective and thus enable ample control authority.
Resumo:
The unique features of a macromolecule and water as a solvent make the issue of solvation unconventional, with questions about the static versus dynamic nature of hydration and the, physics of orientational and translational diffusion at the boundary. For proteins, the hydration shell that covers the surface is critical to the stability of its structure and function. Dynamically speaking, the residence time of water at the surface is a signature of its mobility and binding. With femtosecond time resolution it is possible to unravel the shortest residence times which are key for the description of the hydration layer, static or dynamic. In this article we review these issues guided by experimental studies, from this laboratory, of polar hydration dynamics at the surfaces of two proteins (Subtilisin Carlsberg (SC) and Monellin). The natural probe tryptophan amino acid was used for the interrogation of the dynamics, and for direct comparison we also studied the behavior in bulk water - a complete hydration in 1 ps. We develop a theoretical description of solvation and relate the theory to the experimental observations. In this - theoretical approach, we consider the dynamical equilibrium in the hydration shell, defining the rate processes for breaking and making the transient hydrogen bonds, and the effective friction in the layer which is defined by the translational and orientational motions of water molecules. The relationship between the residence time of water molecules and the observed slow component in solvation dynamics is a direct one. For the two proteins studied, we observed a "bimodal decay" for the hydration correlation function, with two primary relaxation times: ultrafast, typically 1 ps or less, and longer, typically 15-40 ps, and both are related to the residence time at the protein surface, depending on the binding energies. We end by making extensions to studies of the denatured state of the protein, random coils, and the biomimetic micelles, and conclude with our thoughts on the relevance of the dynamics of native structures to their functions.
Resumo:
Ceria-supported Au catalyst has been synthesized by the solution combustion method for the first time and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Au is dispersed as Au as well as Au3+ states on CeO2 surface of 20-30 nm crystallites. On heating the as-prepared 1% Au/CeO2 in air, the concentration of Au3- ions on CeO2 increases at the expense of Au. Catalytic activities for CO and hydrocarbon oxidation and NO reduction over the as-prepared and the heat-treated 1% Au/CeO2 have been carried out using a temperature-programmed reaction technique in a packed bed tubular reactor. The results are compared with nano-sized Au metal particles dispersed on alpha-Al2O3 substrate prepared by the same method. All the reactions over heat-treated Au/CeO2 occur at lower temperature in comparison with the as-prepared Au/CeO2 and Au/Al2O3. The rate of NO + CO reaction over as-prepared and heat-treated 1% Au/CeO2 are 28.3 and 54.0 mumol g(-1) s(-1) at 250 and 300 degreesC respeceively. Activation energy (E,) values are 106 and 90 kJ mol(-1) for CO + O-2 reaction respectively over as-prepared and heat-treated 1% Au/CeO2 respectively.