985 resultados para 616.91 Malattie da virus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppressors of cytokine signaling (SOCS) proteins are a family of proteins that are able to act in a classic negative feedback loop to regulate cytokine signal transduction. The regulation of the immune response by SOCS proteins may contribute to persistent infection or even a fatal outcome. In this study, we have investigated the induction of SOCS 1-3 after peripheral infection with West Nile virus (WNV) or tick-borne encephalitis virus (TBEV) in the murine model. We have shown that the cytokine response after infection of mice with WNV or TBEV induces an upregulation in the brain of mRNA transcripts for SOCS 1 and SOCS 3, but not SOCS 2. We hypothesize that SOCS proteins may play a role in limiting cytokine responses in the brain as a neuroprotective mechanism, which may actually enhance the ability of neuroinvasive viruses such as WNV and TBEV to spread and cause disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attenuation processes controlling virus fate and transport in the vadose zone of karstified systems can strongly influence groundwater quality. This research compares the breakthrough of two bacteriophage tracers (H40/1 and T7), with contrasting properties, at subsurface monitoring points following application onto an overlying composite sequence of thin organic soil and weathered limestone (epikarst). Short pulse multi-tracer test results revealed that T7 (Source concentration, Co=1.8x106pfu/mL) and H40/1(Co=5.9x106pfu/mL) could reach sampling points 10m below ground less than 30 minutes after tracer application. Contrasting deposition rates, determined from simulated tracer responses, reflected the potential of the ground to differentially attenuate viruses. Prolonged application of both T7 (Co=2.3x104pfu/mL) and H40/1 (Co=1.3x105pfu/mL) over a five hour period during a subsequent test, in which ionic strength levels observed at monitoring points rose consistently, corresponded to a rapid rise in T7 levels, followed by a gradual decline before the end of tracer injection; this reflected reaction-limited deposition in the system. T7’s response contrasted with that of H40/1, whose concentration remained constant over a three hour period before declining dramatically prior to the end of tracer injection. Subsequent application of lower ionic strength tracer-free flush water generated a rapid rise in H40/1 levels and a more gradual release of T7. Results highlight the benefits of employing prolonged injection multi-tracer tests for identifying processes not apparent from conventional short pulse tests. Study findings demonstrate that despite rapid transport rates, the epikarst is capable of physicochemical filtration of viruses and their remobilization, depending on virus type and hydrochemical conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2006 and 2007, elevated numbers of deaths among seals, constituting an unusual mortality event, occurred off the coasts of Maine and Massachusetts, United States. We isolated a virus from seal tissue and confirmed it as phocine distemper virus (PDV). We compared the viral hemagglutinin, phosphoprotein, and fusion (F) and matrix (M) protein gene sequences with those of viruses from the 1988 and 2002 PDV epizootics. The virus showed highest similarity with a PDV 1988 Netherlands virus, which raises the possibility that the 2006 isolate from the United States might have emerged independently from 2002 PDVs and that multiple lineages of PDV might be circulating among enzootically infected North American seals. Evidence from comparison of sequences derived from different tissues suggested that mutations in the F and M genes occur in brain tissue that are not present in lung, liver, or blood, which suggests virus persistence in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common Agricultural Policy - Clearance of EAGGF accounts - 1988 financial year

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State aid - Tax exemption on earnings from exports - Recovery

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse genetics has facilitated the use of non-segmented negative strand RNA viruses (NNSV) as vectors. Currently, heterologous gene expression necessitates insertion of extra-numeral transcription units (ENTUs), which may alter the NNSV polar transcription gradient and attenuate growth relative to wildtype (Wt). We hypothesized that rescuing recombinant Sendai Virus (rSeV) with a bicistronic gene might circumvent this attenuation but still allow heterologous open reading frame (ORF) expression. Therefore, we used a 9-nucleotide sequence previously described with internal ribosome entry site (IRES) activity, which, when constructed as several repeats, synergistically increased the level of expression of the second cistron [Chappell, S.A., Edelman, G.M., Mauro, V.P., 2000. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. U.S.A. 97, 1536-1541]. We inserted the Renilla luciferase (rLuc) ORF, preceded by 1, 3 or 7 IRES copies, downstream of the SeV N ORF in an infectious clone. Corresponding rSeVs were successfully rescued. Interestingly, bicistronic rSeVs grew as fast as or faster than Wt rSeV. Furthermore, SeV gene transcription downstream of the N/rLuc gene was either equivalent to, or slightly enhanced, compared to Wt rSeV. Importantly, all rSeV/rLuc viruses efficiently expressed rLuc. IRES repetition increased rLuc expression at a multiplicity of infection of 0.1, although without evidence of synergistic enhancement. In conclusion, our approach provides a novel way of insertion and expression of foreign genes in NNSVs. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory viruses are among the most important causes of morbidity and mortality worldwide. From a vaccine viewpoint, such viruses may be divided into two principle groups-those where infection results in long-term immunity and whose continued survival requires constant mutation, and those where infection induces incomplete immunity and repeated infections are common, even with little or no mutation. Influenza virus and respiratory syncytial virus (RSV) typify the former and latter groups, respectively. Importantly, successful vaccines have been developed against influenza virus. However, this is not the case for RSV, despite many decades of research and several vaccine approaches. Similar to natural infection, the principle limitation of candidate RSV vaccines in humans is limited immunogenicity, characterised in part by short-term RSV-specific adaptive immunity. The specific reasons why natural RSV infection is insufficiently immunogenic in humans are unknown but circumvention of innate and adaptive immune responses are likely causes. Fundamental questions concerning RSV/host interactions remain to be addressed at both the innate and adaptive immune levels in humans in order to elucidate mechanisms of immune response circumvention. Taking the necessary steps back to generate such knowledge will provide the means to leap forward in our quest for a successful RSV vaccine. Recent developments relating to some of these questions are discussed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants. RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorylation status of the small hydrophobic (SH) protein of respiratory syncytial virus (RSV) was examined in virus-infected Vero cells. The SH protein v.,as isolated from [S-35]methionine- and [P-33]orthophosphate-labelled IRSV-infected cells and analysed by SDS-PAGE. In each case, a protein product of the expected size for the SH protein was observed. Phosphoamino acid analysis and reactivity with the phosphotyrosine specific antibody PY20 showed that the SH protein was modified by tyrosine phosphorylation. The role or tyrosine kinase activity in SH protein phosphorylation was confirmed by the use of genistein, a broad-spectrum tyrosine kinase inhibitor, to inhibit SH protein phosphorylation. Further analysis showed that the different glycosylated forms of the SH protein were phosphorylated, as was the oligomeric form of the protein. Phosphorylation of the SH protein was specifically inhibited by the mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580, suggesting that SH protein phosphorylation occurs via a MAPK p38-dependent pathway. Analysis of virus-infected cells using fluorescence microscopy showed that, although the SH protein was distributed throughout the cytoplasm, it appeared to accumulate, at low levels, in the endoplasmic reticulum/Golgi complex, confirming recent observations. However, in the presence of SB203580. an increased accumulation of the SH protein in the Golgi complex was observed, although other virus structures, such as virus filaments and inclusion bodies, remained largely unaffected. These results showed that during RSV infection, the SH protein is modified by an MAPK p38-dependant tyrosine kinase activity and that this modification influences its cellular distribution.