907 resultados para 3D cell culture
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.
Resumo:
Smoking crack cocaine involves the inhalation of cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). Although there is evidence that cocaine is neurotoxic, the neurotoxicity of AEME has never been evaluated. AEME seems to have cholinergic agonist properties in the cardiovascular system; however, there are no reports on its effects in the central nervous system. The aim of this study was to investigate the neurotoxicity of AEME and its possible cholinergic effects in rat primary hippocampal cell cultures that were exposed to different concentrations of AEME, cocaine, and a cocaineAEME combination. We also evaluated the involvement of muscarinic cholinergic receptors in the neuronal death induced by these treatments using concomitant incubation of the cells with atropine. Neuronal injury was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The results of the viability assays showed that AEME is a neurotoxic agent that has greater neurotoxic potential than cocaine after 24 and 48 h of exposure. We also showed that incubation for 48 h with a combination of both compounds in equipotent concentrations had an additive neurotoxic effect. Although both substances decreased cell viability in the MTT assay, only cocaine increased LDH release. Caspase-3 activity was increased after 3 and 6 h of incubation with 1mM cocaine and after 6 h of 0.1 and 1.0mM AEME exposure. Atropine prevented the AEME-induced neurotoxicity, which suggests that muscarinic cholinergic receptors are involved in AEME's effects. In addition, binding experiments confirmed that AEME has an affinity for muscarinic cholinergic receptors. Nevertheless, atropine was not able to prevent the neurotoxicity produced by cocaine and the cocaineAEME combination, suggesting that these treatments activated other neuronal death pathways. Our results suggest a higher risk for neurotoxicity after smoking crack cocaine than after cocaine use alone.