902 resultados para 390304 Counselling and Mediation Services
Resumo:
Red light cameras (RLCs) have been used in a number of US cities to yield a demonstrable reduction in red light violations; however, evaluating their impact on safety (crashes) has been relatively more difficult. Accurately estimating the safety impacts of RLCs is challenging for several reasons. First, many safety related factors are uncontrolled and/or confounded during the periods of observation. Second, “spillover” effects caused by drivers reacting to non-RLC equipped intersections and approaches can make the selection of comparison sites difficult. Third, sites selected for RLC installation may not be selected randomly, and as a result may suffer from the regression to the mean bias. Finally, crash severity and resulting costs need to be considered in order to fully understand the safety impacts of RLCs. Recognizing these challenges, a study was conducted to estimate the safety impacts of RLCs on traffic crashes at signalized intersections in the cities of Phoenix and Scottsdale, Arizona. Twenty-four RLC equipped intersections in both cities are examined in detail and conclusions are drawn. Four different evaluation methodologies were employed to cope with the technical challenges described in this paper and to assess the sensitivity of results based on analytical assumptions. The evaluation results indicated that both Phoenix and Scottsdale are operating cost-effective installations of RLCs: however, the variability in RLC effectiveness within jurisdictions is larger in Phoenix. Consistent with findings in other regions, angle and left-turn crashes are reduced in general, while rear-end crashes tend to increase as a result of RLCs.
Resumo:
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models. The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler's out-of-home activity-tour time-use patterns.
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.
Resumo:
This paper describes the formalization and application of a methodology to evaluate the safety benefit of countermeasures in the face of uncertainty. To illustrate the methodology, 18 countermeasures for improving safety of at grade railroad crossings (AGRXs) in the Republic of Korea are considered. Akin to “stated preference” methods in travel survey research, the methodology applies random selection and laws of large numbers to derive accident modification factor (AMF) densities from expert opinions. In a full Bayesian analysis framework, the collective opinions in the form of AMF densities (data likelihood) are combined with prior knowledge (AMF density priors) for the 18 countermeasures to obtain ‘best’ estimates of AMFs (AMF posterior credible intervals). The countermeasures are then compared and recommended based on the largest safety returns with minimum risk (uncertainty). To the author's knowledge the complete methodology is new and has not previously been applied or reported in the literature. The results demonstrate that the methodology is able to discern anticipated safety benefit differences across candidate countermeasures. For the 18 at grade railroad crossings considered in this analysis, it was found that the top three performing countermeasures for reducing crashes are in-vehicle warning systems, obstacle detection systems, and constant warning time systems.
Resumo:
In order to examine time allocation patterns within household-level trip-chaining, simultaneous doubly-censored Tobit models are applied to model time-use behavior within the context of household activity participation. Using the entire sample and a sub-sample of worker households from Tucson's Household Travel Survey, two sets of models are developed to better understand the phenomena of trip-chaining behavior among five types of households: single non-worker households, single worker households, couple non-worker households, couple one-worker households, and couple two-worker households. Durations of out-of-home subsistence, maintenance, and discretionary activities within trip chains are examined. Factors found to be associated with trip-chaining behavior include intra-household interactions with the household types and their structure and household head attributes.
Resumo:
The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 mandated the consideration of safety in the regional transportation planning process. As part of National Cooperative Highway Research Program Project 8-44, "Incorporating Safety into the Transportation Planning Process," we conducted a telephone survey to assess safety-related activities and expertise at Governors Highway Safety Associations (GHSAs), and GHSA relationships with metropolitan planning organizations (MPOs) and state departments of transportation (DOTs). The survey results were combined with statewide crash data to enable exploratory modeling of the relationship between GHSA policies and programs and statewide safety. The modeling objective was to illuminate current hurdles to ISTEA implementation, so that appropriate institutional, analytical, and personnel improvements can be made. The study revealed that coordination of transportation safety across DOTs, MPOs, GHSAs, and departments of public safety is generally beneficial to the implementation of safety. In addition, better coordination is characterized by more positive and constructive attitudes toward incorporating safety into planning.
Resumo:
Speeding is recognized as a major contributing factor in traffic crashes. In order to reduce speed-related crashes, the city of Scottsdale, Arizona implemented the first fixed-camera photo speed enforcement program (SEP) on a limited access freeway in the US. The 9-month demonstration program spanning from January 2006 to October 2006 was implemented on a 6.5 mile urban freeway segment of Arizona State Route 101 running through Scottsdale. This paper presents the results of a comprehensive analysis of the impact of the SEP on speeding behavior, crashes, and the economic impact of crashes. The impact on speeding behavior was estimated using generalized least square estimation, in which the observed speeds and the speeding frequencies during the program period were compared to those during other periods. The impact of the SEP on crashes was estimated using 3 evaluation methods: a before-and-after (BA) analysis using a comparison group, a BA analysis with traffic flow correction, and an empirical Bayes BA analysis with time-variant safety. The analysis results reveal that speeding detection frequencies (speeds> or =76 mph) increased by a factor of 10.5 after the SEP was (temporarily) terminated. Average speeds in the enforcement zone were reduced by about 9 mph when the SEP was implemented, after accounting for the influence of traffic flow. All crash types were reduced except rear-end crashes, although the estimated magnitude of impact varies across estimation methods (and their corresponding assumptions). When considering Arizona-specific crash related injury costs, the SEP is estimated to yield about $17 million in annual safety benefits.
Resumo:
Identifying crash “hotspots”, “blackspots”, “sites with promise”, or “high risk” locations is standard practice in departments of transportation throughout the US. The literature is replete with the development and discussion of statistical methods for hotspot identification (HSID). Theoretical derivations and empirical studies have been used to weigh the benefits of various HSID methods; however, a small number of studies have used controlled experiments to systematically assess various methods. Using experimentally derived simulated data—which are argued to be superior to empirical data, three hot spot identification methods observed in practice are evaluated: simple ranking, confidence interval, and Empirical Bayes. Using simulated data, sites with promise are known a priori, in contrast to empirical data where high risk sites are not known for certain. To conduct the evaluation, properties of observed crash data are used to generate simulated crash frequency distributions at hypothetical sites. A variety of factors is manipulated to simulate a host of ‘real world’ conditions. Various levels of confidence are explored, and false positives (identifying a safe site as high risk) and false negatives (identifying a high risk site as safe) are compared across methods. Finally, the effects of crash history duration in the three HSID approaches are assessed. The results illustrate that the Empirical Bayes technique significantly outperforms ranking and confidence interval techniques (with certain caveats). As found by others, false positives and negatives are inversely related. Three years of crash history appears, in general, to provide an appropriate crash history duration.
Resumo:
The costs of work-related crashes In Australia and overseas, fleet safety or work-related road safety is an issue gaining increased attention from researchers, organisations, road safety practitioners and the general community. This attention is primarily in response to the substantial physical, emotional and economic costs associated with work-related road crashes. The increased risk factors and subsequent costs of work-related driving are also now well documented in the literature. For example, it is noteworthy that research has demonstrated that work-related drivers on average report a higher level of crash involvement compared to personal car drivers (Downs et al., 1999; Kweon and Kockelman, 2003) and in particular within Australia, road crashes are the most common form of work-related fatalities (Haworth et al., 2000).
Resumo:
National estimates of the prevalence of child abuse-related injuries are obtained from a variety of sectors including welfare, justice, and health resulting in inconsistent estimates across sectors. The International Classification of Diseases (ICD) is used as the international standard for categorising health data and aggregating data for statistical purposes, though there has been limited validation of the quality, completeness or concordance of these data with other sectors. This research study examined the quality of documentation and coding of child abuse recorded in hospital records in Queensland and the concordance of these data with child welfare records. A retrospective medical record review was used to examine the clinical documentation of over 1000 hospitalised injured children from 20 hospitals in Queensland. A data linkage methodology was used to link these records with records in the child welfare database. Cases were sampled from three sub-groups according to the presence of target ICD codes: Definite abuse, Possible abuse, unintentional injury. Less than 2% of cases coded as being unintentional were recoded after review as being possible abuse, and only 5% of cases coded as possible abuse cases were reclassified as unintentional, though there was greater variation in the classification of cases as definite abuse compared to possible abuse. Concordance of health data with child welfare data varied across patient subgroups. This study will inform the development of strategies to improve the quality, consistency and concordance of information between health and welfare agencies to ensure adequate system responses to children at risk of abuse.
Resumo:
Emergency departments (EDs) are often the first point of contact with an abused child. Despite legal mandate, the reporting of definite or suspected abusive injury to child safety authorities by ED clinicians varies due to a number of factors including training, access to child safety professionals, departmental culture and a fear of ‘getting it wrong’. This study examined the quality of documentation and coding of child abuse captured by ED based injury surveillance data and ED medical records in the state of Queensland and the concordance of these data with child welfare records. A retrospective medical record review was used to examine the clinical documentation of almost 1000 injured children included in the Queensland Injury Surveillance Unit database (QISU) from 10 hospitals in urban and rural centres. Independent experts re-coded the records based on their review of the notes. A data linkage methodology was then used to link these records with records in the state government’s child welfare database. Cases were sampled from three sub-groups according to the surveillance intent codes: Maltreatment by parent, Undetermined and Unintentional injury. Only 0.1% of cases coded as unintentional injury were recoded to maltreatment by parent, while 1.2% of cases coded as maltreatment by parent were reclassified as unintentional and 5% of cases where the intent was undetermined by the triage nurse were recoded as maltreatment by parent. Quality of documentation varied across type of hospital (tertiary referral centre, children’s, urban, regional and remote). Concordance of health data with child welfare data varied across patient subgroups. Outcomes from this research will guide initiatives to improve the quality of intentional child injury surveillance systems.
Resumo:
Objective: To examine the prospective dose–response relationships between both leisure-time physical activity (LTPA) and walking with self-reported arthritis in older women. Design, setting and participants: Data came from women aged 73–78 years who completed mailed surveys in 1999, 2002 and 2005 for the Australian Longitudinal Study on Women’s Health. Women reported their weekly minutes of walking and moderate to vigorous physical activities. They also reported on whether they had been diagnosed with, or treated for, arthritis since the previous survey. General estimating equation analyses were performed to examine the longitudinal relationship between LTPA and arthritis and, for women who reported walking as their only physical activity, the longitudinal relationship between walking and arthritis. Women who reported arthritis or a limited ability to walk in 1999 were excluded, resulting in data from 3613 women eligible for inclusion in these analyses. Main results: ORs for self-reported arthritis were lowest for women who reported “moderate” levels of LTPA (OR 0.78; 95% CI 0.67 to 0.92), equivalent to 75 to <150 minutes of moderate-intensity LTPA per week. Slightly higher odds ratios were found for women who reported “high” (OR 0.81; 95% CI 0.69 to 0.95) or “very high” (OR 0.84; 95% CI 0.72 to 0.98) LTPA levels, indicating no further benefit from increased activity. For women whose only activity was walking, an inverse dose–response relationship between walking and arthritis was seen. Conclusions: The results support an inverse association between both LTPA and walking with self-reported arthritis over 6 years in older women who are able to walk.
Resumo:
BACKGROUND AND OBJECTIVES: College students and young adults are experiencing the greatest increases in rates of obesity, and 20% of college students are classified as obese. The objective of this study was to compare changes and rates of change in body weight and body composition between the freshman academic year and the summer after the freshman year among female college students. METHODS: Participants were recruited early in their freshman year of college to participate in a prospective longitudinal study examining changes in body weight and composition over the college years. Height and weight were measured, and body composition was assessed using dual energy x-ray absorptiometry (DEXA) at the beginning and end of the freshman year. Upon return from the summer for their sophomore year, participants returned to have all measurements repeated. Sixty-nine female participants completed all three visits. RESULTS: Body weight increased 1.3 kg during the academic period and an additional 0.1 kg during the summer period. Body mass index (BMI) increased between the first two visits but did not change between the last two visits. However, percent fat increased at each visit. Fat-free mass significantly increased 0.5 kg over the academic year but decreased by 1.1 kg over the summer (p<0.05). Greater rates of change were detected in percent fat, fat-free mass, and BMI during the summer compared with the academic year (p<0.05). CONCLUSIONS: Differences in body composition between the academic and summer periods may reflect changes in living situations between these periods. Unfavorable changes during the summer suggest the need to promote healthy lifestyles to freshman women before they leave campus for the summer