815 resultados para 390301 Justice Systems and Administration
Resumo:
Emissions are an important aspect of a pellet heating system. High carbon monoxide emissions are often caused by unnecessary cycling of the burner when the burner is operated below the lowest combustion power. Combining pellet heating systems with a solar heating system can significantly reduce cycling of the pellet heater and avoid the inefficient summer operation of the pellet heater. The aim of this paper was to study CO-emissions of the different types of systems and to compare the yearly CO-emissions obtained from simulations with the yearly CO-emissions calculated based on the values that are obtained by the standard test methods. The results showed that the yearly CO-emissions obtained from the simulations are significant higher than the yearly CO-emissions calculated based on the standard test methods. It is also shown that for the studied systems the average emissions under these realistic annual conditions were greater than the limit values of two Eco-labels. Furthermore it could be seen that is possible to almost halve the CO-emission if the pellet heater is combined with a solar heating system.
Resumo:
The objective of this study was to elucidate population fluctuations of spider and ant species in forest fragments and adjacent soybean and corn crops under no-tillage and conventional tillage systems, and their correlations with meteorological factors. From Nov 2004 to Apr 2007 sampling of these arthropods at Guaira, São Paulo state was done biweekly during the cropping season and monthly during the periods between crops. To obtain samples at each experimental site, pitfall traps were distributed in 2 transects of 200 m of which 100 m was in the crop, and 100 m was in the forest fragment. Temperature and rainfall were found to have major impacts on fluctuations in population densities of ants of the genus, Pheidole, in soybean and corn crops both grown with conventional tillage and no tillage systems.
Resumo:
The effects of agricultural-pastoral and tillage practices on soil microbial populations and activities have not been systematically investigated. The effect of no-tillage (NT), no-tillage agricultural-pastoral integrated systems (NT-I) and conventional tillage (CT) at soil depths of 0-10, 10-20 and 20-30 cm on the microbial populations (bacteria and fungi), biomass-C, potential nitrification, urease and protease activities, total organic matter and total N contents were investigated. The crops used were soybean (in NT, NT-I and CT systems), corn (in NT and NT-I systems) and Tanner grass (Brachiaria sp.) (in NT-I system); a forest system was used as a control. Urease and protease activities, biomass-C and the content of organic matter and total N were higher (p < 0.05) in the forest soil than the other soils. Potential nitrification was significantly higher in the NT-I system in comparison with the other systems. Bacteria numbers were similar in all systems. Fungi counts were similar in the CT and forest, but both were higher than in NT. All of these variables were dependent on the organic matter content and decreased (p < 0.05) from the upper soil layer to the deeper soil layers. These results indicate that the no-tillage agricultural-pasture-integrated systems may be useful for soil conservation.
Resumo:
One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.