933 resultados para 3-DIMENSIONAL POLYMERS
Resumo:
From Electron Spin Resonance (ESR) data in pressed pellets of BF4 - doped Poly(3-methylthiophene) (P3MT) we obtained simultaneously the paramagnetic susceptibility and. the microwave conductivity. We observed a transition from a high-temperature insulator state to a room-temperature metallic state. Around 240K. evidence of a Peierls transition is observed, but if the sample is slowly cooled, this transition is partially suppressed. DC conductivity data taken with the sample quenched to 79 K show a non-linear I-V response for very small electric fields, suggesting depinning of Charge-Density Wave (CDW). The data for heating and cooling the system above room temperature, indicate the formation of bipolarons.
Resumo:
The standard eleven-dimensional supergravity action depends on a three-form gauge field and does not allow direct coupling to five-branes. Using previously developed methods, we construct a covariant eleven-dimensional supergravity action depending on a three-form and six-form gauge field in a duality-symmetric manner. This action is coupled to both the M-theory two-brane and five-brane, and corresponding equations of motion are obtained. Consistent coupling relates D = 11 duality properties with self-duality properties of the M5-brane. From this duality-symmetric formulation, one derives an action describing coupling of the M-branes to standard D = 11 supergravity. © 1998 Elsevier Science B.V.
Resumo:
The negative-dimensional integration method (NDIM) seems to be a very promising technique for evaluating massless and/or massive Feynman diagrams. It is unique in the sense that the method gives solutions in different regions of external momenta simultaneously. Moreover, it is a technique whereby the difficulties associated with performing parametric integrals in the standard approach are transferred to a simpler solving of a system of linear algebraic equations, thanks to the polynomial character of the relevant integrands. We employ this method to evaluate a scalar integral for a massless two-loop three-point vertex with all the external legs off-shell, and consider several special cases for it, yielding results, even for distinct simpler diagrams. We also consider the possibility of NDIM in non-covariant gauges such as the light-cone gauge and do some illustrative calculations, showing that for one-degree violation of covariance (i.e. one external, gauge-breaking, light-like vector n μ) the ensuing results are concordant with the ones obtained via either the usual dimensional regularization technique, or the use of the principal value prescription for the gauge-dependent pole, while for two-degree violation of covariance - i.e. two external, light-like vectors n μ, the gauge-breaking one, and (its dual) n * μ - the ensuing results are concordant with the ones obtained via causal constraints or the use of the so-called generalized Mandelstam-Leibbrandt prescription. © 1999 Elsevier Science B.V.
Resumo:
This paper describes two solutions for systematic measurement of surface elevation that can be used for both profile and surface reconstructions for quantitative fractography case studies. The first one is developed under Khoros graphical interface environment. It consists of an adaption of the almost classical area matching algorithm, that is based on cross-correlation operations, to the well-known method of parallax measurements from stereo pairs. A normalization function was created to avoid false cross-correlation peaks, driving to the true window best matching solution at each region analyzed on both stereo projections. Some limitations to the use of scanning electron microscopy and the types of surface patterns are also discussed. The second algorithm is based on a spatial correlation function. This solution is implemented under the NIH Image macro programming, combining a good representation for low contrast regions and many improvements on overall user interface and performance. Its advantages and limitations are also presented.
Resumo:
In this letter we discuss the (2 + 1)-dimensional generalization of the Camassa-Holm equation. We require that this generalization be, at the same time, integrable and physically derivable under the same asymptotic analysis as the original Camassa-Holm equation. First, we find the equation in a perturbative calculation in shallow-water theory. We then demonstrate its integrability and find several particular solutions describing (2 + 1) solitary-wave like solutions. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Group theoretical-based techniques and fundamental results from number theory are used in order to allow for the construction of exact projectors in finite-dimensional spaces. These operators are shown to make use only of discrete variables, which play the role of discrete generator coordinates, and their application in the number symmetry restoration is carried out in a nuclear BCS wave function which explicitly violates that symmetry. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A sigma model action with N = 2 D = 6 superspace variables is constructed for the Type II superstring compactified to six curved dimensions with Ramond - Ramond flux. The action can be quantized since the sigma model is linear when the six-dimensional space-time is flat. When the six-dimensional space-time is AdS 3 × S 3, the action reduces to one found earlier with Vafa and Witten. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Electron spin resonance (ESR) experiments give extremely important information concerning spin arrangements in conducting polymers. This is evidenced by the behavior of the ESR lines as a function of temperature and microwave power. Our ESR data of pressed pellets of ClO- 4 doped poly(3-methylthiophene) (P3MT) synthesized at 25 °C show the predominance of polarons. Instead, the sample prepared at 5 °C shows the predominance of bipolarons. Besides, for both types of samples, crystallization, observed from the ESR data, has shown a rearrangement of spin species.
Resumo:
This research describes the application of a scientific and technological model of Ergonomics in the design of pre-school furniture. The constant presence of the desk in early education and its influence in the relationship between the user and his educational environment determined the necessity of this project. The pre-school desk was considered as a work station, where the joint aspects of education and child anthropometry substantiate the problem. The review of the Historical application of Ergonomics in the Design of children's products consolidated the importance of this report. The development of ergonomic research, characterised by investigations of the Brazilian child's Anthropometry Data and Biomechanical Features, resulted in dimensional parameters of the user and physical characteristics of the present furniture. These elements, together with a comprehension of activities and needs in the pre-school, were connected with aspects of bibliographical revision to result in a series of recomendations for design. Through the methods of Ergonomic Design, a new proposal for the pre-school desk was developed, denominated Mobipresc 3.6.
Resumo:
Ferromagnetic behavior at room temperature is reported in metal-free-conducting polymer samples of poly(3-methylthiophene) doped with ClO 4 -. Magnetic moments associated with spin 1/2 positive polarons are possibly interacting through a Dzialoshinski-Moriya anisotropic superexchange via the dopant anions, giving rise to weak ferromagnetism. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We consider an integrable conformally invariant two-dimensional model associated to the affine Kac-Moody algebra sl3(ℂ). It possesses four scalar fields and six Dirac spinors. The theory does not possesses a local Lagrangian since the spinor equations of motion present interaction terms which are bilinear in the spinors. There exists a submodel presenting an equivalence between a U(1) vector current and a topological current, which leads to a confinement of the spinors inside the solitons. We calculate the one-soliton and two-soliton solutions using a procedure which is a hybrid of the dressing and Hirota methods. The soliton masses and time delays due to the soliton interactions are also calculated. We give a computer program to calculate the soliton solutions. © 2002 Published by Elsevier Science B.V.
Resumo:
Statement of problem. Little data are available regarding the effect of heat-treatments on the dimensional stability of hard chairside reline resins. Purpose. The objective of this in vitro study was to evaluate whether a heat-treatment improves the dimensional stability of the reline resin Duraliner II and to compare the linear dimensional changes of this material with the heat-polymerized acrylic resin Lucitone 550. Material and methods. The materials were mixed according to the manufacturer's instructions and packed into a stainless steel split mold (50.0 mm diameter and 0.5 mm thickness) with reference points (A, B, C, and D). Duraliner II specimens were polymerized for 12 minutes in water at 37°C and bench cooled to room temperature before being removed from the mold. Twelve specimens were made and divided into 2 groups: group 1 specimens (n=6) were left untreated, and group 2 specimens (n=6) were submitted to a heat-treatment in a water bath at 55°C for 10 minutes and then bench cooled to room temperature. The 6 Lucitone specimens (control group) were polymerized in a water bath for 9 hours at 71°C. The specimens were removed after the mold reached the room temperature. A Nikon optical comparator was used to measure the distances between the reference points (AB and CD) on the stainless steel mold (baseline readings) and on the specimens to the nearest 0.001 mm. Measurements were made after processing and after the specimens had been stored in distilled water at 37°C for 8 different periods of time. Data were subjected to analysis of variance with repeated measures, followed by Tukey's multiple comparison test (P<.05). Results. All specimens exhibited shrinkage after processing (control, -0.41%; group 1, -0.26%; and group 2, -0.51%). Group 1 specimens showed greater shrinkage (-1.23%) than the control (-0.23%) and group 2 (-0.81%) specimens after 60 days of storage in water (P<.05). Conclusion. Within the limitations of this study, a significant improvement of the long-term dimensional stability of the Duraliner II reline resin was observed when the specimens were heat-treated. However, the shrinkage remained considerably higher than the denture base resin Lucitone 550. Copyright © 2002 by The Editorial Council of The Journal of Prosthetic Dentistry.
Resumo:
The one-dimensional coordination polymer of palladium(II) with pyrazolato (Pz -) and azide (N 3 -) as bridging ligands, of formula [Pd 3(μ-N 3)(μ-Pz) 5] n, has been prepared. From IR and Raman studies it was evidenced the exobidentate nature of pyrazole ligands as well the μ-1,1-bridging coordination of azido groups. NMR experiments showed two sets of broadened signals with different intensities indicating the presence of pyrazolato groups in distinct chemical environments. The proposed structure of [Pd 3(μ-N 3)(μ-Pz) 5] n consists of a zigzag ribbon in which each (Pz) 2Pd(Pz) 2 entity is bound to two stacked planar units [Pd(μ-Pz)(μ-N 3)Pd core] with very weak Pd-Pd interaction, based on UV-Vis spectroscopy.
Resumo:
Hughston has shown that projective pure spinors can be used to construct massless solutions in higher dimensions, generalizing the four-dimensional twistor transform of Penrose. In any even (euclidean) dimension d = 2n, projective pure spinors parameterize the coset space SO(2n)/U(n), which is the space of all complex structures on ℝ2n. For d = 4 and d = 6, these spaces are ℂℙ1 and ℂℙ3 and the appropriate twistor transforms can easily be constructed. In this paper, we show how to construct the twistor transform for d > 6 when the pure spinor satisfies nonlinear constraints, and present explicit formulas for solutions of the massless field equations. © SISSA/ISAS 2005.
Resumo:
We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.