991 resultados para 291400 Materials Engineering
Resumo:
The apparent contradiction between the exact nature of the interaction parameter formalism as presented by Lupis and Elliott and the inconsistencies discussed recently by Pelton and Bale arise from the truncation of the Maclaurin series in the latter treatment. The truncation removes the exactness of the expression for the logarithm of the activity coefficient of a solute in a multi-component system. The integrals are therefore path dependent. Formulae for integration along paths of constant Xi,or X i/Xj are presented. The expression for In γsolvent given by Pelton and Bale is valid only in the limit that the mole fraction of solvent tends to one. The truncation also destroys the general relations between interaction parameters derived by Lupis and Elliott. For each specific choice of parameters special relationships are obtained between interaction parameters.
Resumo:
Thermodynamics of Cr-Mn alloys have been studied by Eremenko et al (l) using a fused salt e.m.f.technique. Their results indicate positive deviations from ideality at 1023 K. Kaufman (2) has independently estimated negative enthaipy and excess entropy for the b.c.c. Cr-Mn alloys, such that at high temperatures, the entropy term predominates over the enthalpy term giving positive deviations from ideality. Recently the thermodynamic properties of the alloys have been measured by 3acob (3) using a Knudsen cell technique in the temperature range of 1200 to 1500 K. The results indicate mild negative deviations from ideality over the entire composition range. Because of the differences in the reported results and Mn being a volatile component in the alloys which leads to surface depletion under a dynamic set up, an isopiestic technique is used to measure the properties of the alloys.
Resumo:
The Gibbs' energy change for the reaction, 3CoO (r.s.)+1/2O2(g)→Co3O4(sp), has been measured between 730 and 1250 K using a solid state galvanic cell: Pt, CuO+Cu2O|(CaO)ZrO2|CoO+Co3O4,Pt. The emf of this cell varies nonlinearly with temperature between 1075 and 1150 K, indicating a second or higher order phase transition in Co3O4around 1120 (±20) K, associated with an entropy change of ∼43 Jmol-1K-1. The phase transition is accompanied by an anomalous increase in lattice parameter and electrical conductivity. The cubic spinel structure is retained during the transition, which is caused by the change in CO+3 ions from low spin to high spin state. The octahedral site preference energy of CO+3 ion in the high spin state has been evaluated as -24.8 kJ mol-1. This is more positive than the value for CO+2 ion (-32.9 kJ mol-1). The cation distribution therefore changes from normal to inverse side during the phase transition. The transformation is unique, coupling spin unpairing in CO+3 ion with cation rearrangement on the spinel lattice, DTA in pure oxygen revealed a small peak corresponding to the transition, which could be differentiated from the large peak due to decomposition. TGA showed that the stoichiometry of oxide is not significantly altered during the transition. The Gibbs' energy of formation of Co3O4 from CoO and O2 below and above phase transition can be represented by the equations:ΔG0=-205,685+170.79T(±200) J mol-1(730-1080 K) and ΔG0=-157,235+127.53T(±200) J mol-1(1150-1250 K).
Resumo:
The vapour pressures of barium and strontium have been measured by continuous monitoring of the weight loss of Knudsen cells in the temperature range 700�1200 K. The results for strontium agree with those reported in the literature, but the vapour pressure of barium has been found to be considerably lower than the generally accepted value. The experimentally determined pressures are in good agreement with theoretical values obtained using the Gibbs-Bogoliubov first-order variational method.
Resumo:
Attempts are made to measure activities of both components of a binary alloy (A�B) at 650 K using a solid-state galvanic cell incorporating a new composite solid electrolyte. Since the ionic conductivity of the composite solid electrolyte is three orders of magnitude higher than that of pure CaF2, the cell can be operated at lower temperatures. The alloy phase is equilibrated in separate experiments with flourides of each component and fluorine potential is measured. The mixture of the alloy (A�B) and the fluoride of the more reactive component (BF2) is stable, while (A�B) + AF2 mixture is metastable, Factors governing the possible use of metastable equilibria have been elucidated in this study. In the Co�Ni system, where the difference in Gibbs energies of formation of the fluorides is 21.4 kJ/mol, emf of the cell with metastable phases at the electrode is constant for periods ranging from 90 to 160 ks depending on alloy composition. Subsequently, the emf decreases because of the onset of the displacement reaction. In the Ni�Mn system, measurement of the activity of Ni using metastable equilibria is not fully successful at 650 K because of the large driving force for the displacement reaction (208.8 kJ/mol). Critical factors in the application of metastable equilibria are the driving force for displacement reaction and diffusion coefficients in both the alloy and fluoride solid solution.
Resumo:
The e.m.f. of a concentration cell for SO x (x=2,3)-O2 incorporating Nasicon as the main solid electrolyte has been measured in the temperature range 720 to 1080 K. The cell arrangement can be represented as,$$Pt, O'_2 + SO'_2 + SO'_3 \left| {Na_2 SO_4 \left\| {\left. {Nasicon} \right\|} \right.} \right.\left. {Na_2 SO_4 } \right|SO''_3 + SO''_2 + O''_2 , Pt$$ The Na2SO4 acts both as an auxiliary electrode, converting chemical potentials of SO x and O2 to equivalent sodium potentials, and as an electrolyte. The presence of Na2SO4 provides partial protection of Nasicon from chemical reaction with gas mixtures containing SO x . The open circuit e.m.f. of the cell is in close agreement with values given by the Nernst equation. For certain fixed inlet gas compositions of SO2+O2, the e.m.f. varies non-linearly with temperature. The intrinsic response time of the cell to step changes in gas composition is estimated to vary from sim2.0 ksec at 723K to sim 0.2 ksec at 1077K. The cell functions well for large differences in partial pressures of SO3(pPrimeSO 3/pprimeSO 3ap104) at the electrodes.
Resumo:
The regular associated solution model for binary systems has been modified by incorporating the size of the complex as an explicit variable. The thermodynamic properties of the liquid alloy and the interactions between theA ?B type of complex and the unassociated atoms in anA-B binary have been evaluated as a function of relative size of the complex using the activity coefficients at infinite dilution and activity data at one other composition in the binary. The computational procedure adopted for determining the concentration of clusters and interaction energies in the associated liquid is similar to that proposed by Lele and Rao. The analysis has been applied to the thermodynamic mixing functions of liquid Al-Ca alloys believed to contain Al2Ca associates. It is found that the size of the cluster significantly affects the interaction energies between the complex and the unassociated atoms, while the equilibrium constant and enthalpy change for the association reaction exhibit only minor variation, when the equations are fitted to experimental data. The interaction energy between unassociated free atoms remains virtually unaltered as the size of the complex is varied between extreme values. Accurate data on free energy, enthalpy, and volume of mixing at the same temperature on alloy systems with compound forming tendency would permit a rigorous test of the proposed model.
Resumo:
Authors perform zeta potential studies on hematite, corundum, and quartz samples using starches to understand the adsorption behavior of polymeric starch flocculants at the oxide mineral-solution interface and to correlate this information with their flocculation characteristics and investigate effects of pH and CaCl#72 on zeta potential of Fe ore minerals.
Resumo:
A solid-state sensor for SOx (x = 2, 3) species has been designed using ?-alumina as the solid electrolyte and Na2SO4 as the auxiliary electrode. The measured e.m.f. of the cell Pt, O?2 + SO?2 + SO?3|Na2SO4short parallel?-aluminashort parallelNa2SO4|SO?3 + SO?2 + O?2, PT in the temperature range 700 K to 1150 K agrees well with values calculated using the Nernst equation. The sodium sulphate acts both as a protective covering, preventing direct access of the gaseous SOx species to the ?-alumina electrolyte, and as an auxiliary electrode, converting chemical potentials of SOx species and O2 into an equivalent sodium potential. The open-circuit e.m.f. varies non-linearly with temperature for fixed composition of inlet gas mixtures containing SO2, O2 and Ar. The response time (t0.99) of the cell varies between 1.9 ks at 750 K and 0.06 ks at 1100 K. The e.m.f. response is faster when the partial pressure of SOx at the electrode is increased than when it is decreased.
Resumo:
Strain rate sensitivity measurements are used to identify twinning and changes in deformation mechanisms in a Mg AZ31 alloy over a wide range of temperatures and grain sizes. At low temperatures, there is significant twinning at low strains with strain-rate insensitivity; at large strains, strain rate sensitivity is noted, corresponding to deformation by multiple slip. At high temperatures, there is very little twinning and this leads to a significant strain rate sensitivity from the early stages of deformation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Condensation from the vapor state is an important technique for the preparation of nanopowders. Levitational gas condensation is one such technique that has a unique ability of attaining steady state. Here, we present the results of applying this technique to an iron-copper alloy (96Fe-4Cu). A qualitative model of the process is proposed to understand the process and the characteristics of resultant powder. A phase diagram of the alloy system in the liquid-vapor region was calculated to help understand the course of condensation, especially partitioning and coring during processing. The phase diagram could not explain coring in view of the simultaneous occurrence of solidification and the fast homogenization through diffusion in the nanoparticles; however, it could predict the very low levels of copper observed in the levitated drop. The enrichment of copper observed near the surface of the powder was considered to be a manifestation of the lower surface energy of copper compared with that of iron. Heat transfer calculations indicated that most condensed particles can undergo solidification even when they are still in the proximity of the levitated drop. It helped us to predict the temperature and the cooling rate of the powder particles as they move away from the levitated drop. The particles formed by the process seem to be single domain, single crystals that are magnetic in nature. They, thus, can agglomerate by forming a chain-like structure, which manifests as a three-dimensional network enclosing a large unoccupied space, as noticed in scanning electron microscopy and transmission electron microscopy studies. This also explains the observed low packing density of the nanopowders.
Resumo:
Starting with non-stoichiometric Zr-B4C powder mixture ZrB2-ZrC matrix composites with SiC particulate addition have been made. It was found that variable amounts (5-25 vol%) of SiC could be incorporated and reactively hot pressed (RHPed) to relative densities of 97-99% at 1400-1500 degrees C. This technique has the potential to fabricate ZrB2-based matrices at low temperatures with a variety of reinforcements whose composition and volume fraction are not limited by stoichiometric considerations. The hardness of the composites is in the range of 17-22 GPa. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The structural changes occurring during warm working of Cd-1.5 pct Zn alloy and their effect on the subsequent mechanical properties are studied. It is observed that changes in grain size and preferred orientation are important to a large extent in controlling the mechanical strength. The Hall-Petch slope,R decreases in the warm worked material while the friction stress, σo increases. The lowerR values are attributed to the development of a (101l) texture and the higher σo values are interpreted on the basis of changes in the basal texture.
Resumo:
The different formalisms for the representation of thermodynamic data on dilute multicomponent solutions are critically reviewed. The thermodynamic consistency of the formalisms are examined and the interrelations between them are highlighted. The options are constraints in the use of the interaction parameter and Darken's quadratic formalisms for multicomponent solutions are discussed in the light of the available experimental data. Truncatred Maclaurin series expansion is thermodynamically inconsistent unless special relations between interaction parameters are invoked. However, the lack of strict mathematical consistency does not affect the practical use of the formalism. Expressions for excess partial properties can be integrated along defined composition paths without significant loss of accuracy. Although thermodynamically consistent, the applicability of Darken's quadratic formalism to strongly interacting systems remains to be established by experiment.
Resumo:
The thermodynamic activity of sodium oxide (Na2O) in the Nasicon solid solution series, Na1+xZr2SixO12, has been measured in the temperature range 700�1100 K using solid state galvanic cells: Pt|CO2 + O2|Na2CO3?Na1+xZr2SixP3-xO12?(Y2O3)ZrO2?In + In2O3|Ta, Pt for 1 = ? = 2.5, and Pt?CO2 + O2?Na2CO3?ß-alumina?Na1+xZr2SixP3-xO12?Ar + O2?Pt for x = 0, 0.5, 2.5, and 3. The former cell, where the Nasicon solid solution is used as an electrolyte along with yttria-stabilized zirconia, is well suited for Nasicon compositions with high ionic conductivity. In the latter cell, ß-alumina is used as an electrolyte and the Nasicon solid solution forms an electrode. The chemical potential of Na2O is found to increase monotonically with x at constant temperature. The partial entropy of Na2O decreases continuously with x. However, the partial enthalpy exhibits a maximum at x = 2. This suggests that the binding energy is minimum at the composition where ionic conductivity and cell volume have maximum values.