924 resultados para 280401 Analysis of Algorithms and Complexity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent years, quantum information processing and the study of N−qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing efficient quantum information protocols, such as quantum key distribution, teleportation or quantum computation, however, these investigations also revealed a great deal of difficulties which still need to be resolved in practise. Quantum information protocols rely on the application of unitary and non–unitary quantum operations that act on a given set of quantum mechanical two-state systems (qubits) to form (entangled) states, in which the information is encoded. The overall system of qubits is often referred to as a quantum register. Today the entanglement in a quantum register is known as the key resource for many protocols of quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. To facilitate the simulation of such N−qubit quantum systems and the analysis of their entanglement properties, we have developed the Feynman program. The program package provides all necessary tools in order to define and to deal with quantum registers, quantum gates and quantum operations. Using an interactive and easily extendible design within the framework of the computer algebra system Maple, the Feynman program is a powerful toolbox not only for teaching the basic and more advanced concepts of quantum information but also for studying their physical realization in the future. To this end, the Feynman program implements a selection of algebraic separability criteria for bipartite and multipartite mixed states as well as the most frequently used entanglement measures from the literature. Additionally, the program supports the work with quantum operations and their associated (Jamiolkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. As an application of the developed tools we further present two case studies in which the entanglement of two atomic processes is investigated. In particular, we have studied the change of the electron-ion spin entanglement in atomic photoionization and the photon-photon polarization entanglement in the two-photon decay of hydrogen. The results show that both processes are, in principle, suitable for the creation and control of entanglement. Apart from process-specific parameters like initial atom polarization, it is mainly the process geometry which offers a simple and effective instrument to adjust the final state entanglement. Finally, for the case of the two-photon decay of hydrogenlike systems, we study the difference between nonlocal quantum correlations, as given by the violation of the Bell inequality and the concurrence as a true entanglement measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are therefore required to tackle the complexity caused by the high-dimensionality and non-linearity of these systems. In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby yielding information about their oscillatory behavior of the networks. The methods use the representations of the systems on convex coordinates that arise from stoichiometric network analysis. One of the methods called HoCoQ reduces the problem of determining the existence of Hopf bifurcation fixed points to a first-order formula over the ordered field of the reals that can then be solved using computational-logic packages. The second method called HoCaT uses ideas from tropical geometry to formulate a more efficient method that is incomplete in theory but worked very well for the attempted high-dimensional models involving more than 20 chemical species. The instability of reaction networks may lead to the oscillatory behaviour. Therefore, we investigate some criterions for their stability using convex coordinates and quantifier elimination techniques. We also study Muldowney's extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields and we discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney's criteria. All developed algorithms have been integrated into a common software framework called PoCaB (platform to explore bio- chemical reaction networks by algebraic methods) allowing for automated computation workflows from the problem descriptions. PoCaB also contains a database for the algebraic entities computed from the models of chemical reaction networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The author studies the error and complexity of the discrete random walk Monte Carlo technique for radiosity, using both the shooting and gathering methods. The author shows that the shooting method exhibits a lower complexity than the gathering one, and under some constraints, it has a linear complexity. This is an improvement over a previous result that pointed to an O(n log n) complexity. The author gives and compares three unbiased estimators for each method, and obtains closed forms and bounds for their variances. The author also bounds the expected value of the mean square error (MSE). Some of the results obtained are also shown

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Stochastic Diffusion Search (SDS) was developed as a solution to the best-fit search problem. Thus, as a special case it is capable of solving the transform invariant pattern recognition problem. SDS is efficient and, although inherently probabilistic, produces very reliable solutions in widely ranging search conditions. However, to date a systematic formal investigation of its properties has not been carried out. This thesis addresses this problem. The thesis reports results pertaining to the global convergence of SDS as well as characterising its time complexity. However, the main emphasis of the work, reports on the resource allocation aspect of the Stochastic Diffusion Search operations. The thesis introduces a novel model of the algorithm, generalising an Ehrenfest Urn Model from statistical physics. This approach makes it possible to obtain a thorough characterisation of the response of the algorithm in terms of the parameters describing the search conditions in case of a unique best-fit pattern in the search space. This model is further generalised in order to account for different search conditions: two solutions in the search space and search for a unique solution in a noisy search space. Also an approximate solution in the case of two alternative solutions is proposed and compared with predictions of the extended Ehrenfest Urn model. The analysis performed enabled a quantitative characterisation of the Stochastic Diffusion Search in terms of exploration and exploitation of the search space. It appeared that SDS is biased towards the latter mode of operation. This novel perspective on the Stochastic Diffusion Search lead to an investigation of extensions of the standard SDS, which would strike a different balance between these two modes of search space processing. Thus, two novel algorithms were derived from the standard Stochastic Diffusion Search, ‘context-free’ and ‘context-sensitive’ SDS, and their properties were analysed with respect to resource allocation. It appeared that they shared some of the desired features of their predecessor but also possessed some properties not present in the classic SDS. The theory developed in the thesis was illustrated throughout with carefully chosen simulations of a best-fit search for a string pattern, a simple but representative domain, enabling careful control of search conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important goal in computational neuroanatomy is the complete and accurate simulation of neuronal morphology. We are developing computational tools to model three-dimensional dendritic structures based on sets of stochastic rules. This paper reports an extensive, quantitative anatomical characterization of simulated motoneurons and Purkinje cells. We used several local and global algorithms implemented in the L-Neuron and ArborVitae programs to generate sets of virtual neurons. Parameters statistics for all algorithms were measured from experimental data, thus providing a compact and consistent description of these morphological classes. We compared the emergent anatomical features of each group of virtual neurons with those of the experimental database in order to gain insights on the plausibility of the model assumptions, potential improvements to the algorithms, and non-trivial relations among morphological parameters. Algorithms mainly based on local constraints (e.g., branch diameter) were successful in reproducing many morphological properties of both motoneurons and Purkinje cells (e.g. total length, asymmetry, number of bifurcations). The addition of global constraints (e.g., trophic factors) improved the angle-dependent emergent characteristics (average Euclidean distance from the soma to the dendritic terminations, dendritic spread). Virtual neurons systematically displayed greater anatomical variability than real cells, suggesting the need for additional constraints in the models. For several emergent anatomical properties, a specific algorithm reproduced the experimental statistics better than the others did. However, relative performances were often reversed for different anatomical properties and/or morphological classes. Thus, combining the strengths of alternative generative models could lead to comprehensive algorithms for the complete and accurate simulation of dendritic morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteomics approaches have made important contributions to the characterisation of platelet regulatory mechanisms. A common problem encountered with this method, however, is the masking of low-abundance (e.g. signalling) proteins in complex mixtures by highly abundant proteins. In this study, subcellular fractionation of washed human platelets either inactivated or stimulated with the glycoprotein (GP) VI collagen receptor agonist, collagen-related peptide, reduced the complexity of the platelet proteome. The majority of proteins identified by tandem mass spectrometry are involved in signalling. The effect of GPVI stimulation on levels of specific proteins in subcellular compartments was compared and analysed using in silico quantification, and protein associations were predicted using STRING (the search tool for recurring instances of neighbouring genes/proteins). Interestingly, we observed that some proteins that were previously unidentified in platelets including teneurin-1 and Van Gogh-like protein 1, translocated to the membrane upon GPVI stimulation. Newly identified proteins may be involved in GPVI signalling nodes of importance for haemostasis and thrombosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic Network transactions specifies that datagram from source to destination is routed through numerous routers and paths depending on the available free and uncongested paths which results in the transmission route being too long, thus incurring greater delay, jitter, congestion and reduced throughput. One of the major problems of packet switched networks is the cell delay variation or jitter. This cell delay variation is due to the queuing delay depending on the applied loading conditions. The effect of delay, jitter accumulation due to the number of nodes along transmission routes and dropped packets adds further complexity to multimedia traffic because there is no guarantee that each traffic stream will be delivered according to its own jitter constraints therefore there is the need to analyze the effects of jitter. IP routers enable a single path for the transmission of all packets. On the other hand, Multi-Protocol Label Switching (MPLS) allows separation of packet forwarding and routing characteristics to enable packets to use the appropriate routes and also optimize and control the behavior of transmission paths. Thus correcting some of the shortfalls associated with IP routing. Therefore MPLS has been utilized in the analysis for effective transmission through the various networks. This paper analyzes the effect of delay, congestion, interference, jitter and packet loss in the transmission of signals from source to destination. In effect the impact of link failures, repair paths in the various physical topologies namely bus, star, mesh and hybrid topologies are all analyzed based on standard network conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes the analysis and development of novel tools for the global optimisation of relevant mission design problems. A taxonomy was created for mission design problems, and an empirical analysis of their optimisational complexity performed - it was demonstrated that the use of global optimisation was necessary on most classes and informed the selection of appropriate global algorithms. The selected algorithms were then applied to the di®erent problem classes: Di®erential Evolution was found to be the most e±cient. Considering the speci¯c problem of multiple gravity assist trajectory design, a search space pruning algorithm was developed that displays both polynomial time and space complexity. Empirically, this was shown to typically achieve search space reductions of greater than six orders of magnitude, thus reducing signi¯cantly the complexity of the subsequent optimisation. The algorithm was fully implemented in a software package that allows simple visualisation of high-dimensional search spaces, and e®ective optimisation over the reduced search bounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snakebites are a major neglected tropical disease responsible for as many as 95000 deaths every year worldwide. Viper venom serine proteases disrupt haemostasis of prey and victims by affecting various stages of the blood coagulation system. A better understanding of their sequence, structure, function and phylogenetic relationships will improve the knowledge on the pathological conditions and aid in the development of novel therapeutics for treating snakebites. A large dataset for all available viper venom serine proteases was developed and analysed to study various features of these enzymes. Despite the large number of venom serine protease sequences available, only a small proportion of these have been functionally characterised. Although, they share some of the common features such as a C-terminal extension, GWG motif and disulphide linkages, they vary widely between each other in features such as isoelectric points, potential N-glycosylation sites and functional characteristics. Some of the serine proteases contain substitutions for one or more of the critical residues in catalytic triad or primary specificity pockets. Phylogenetic analysis clustered all the sequences in three major groups. The sequences with substitutions in catalytic triad or specificity pocket clustered together in separate groups. Our study provides the most complete information on viper venom serine proteases to date and improves the current knowledge on the sequence, structure, function and phylogenetic relationships of these enzymes. This collective analysis of venom serine proteases will help in understanding the complexity of envenomation and potential therapeutic avenues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the modeling of dielectric responses for an electromagnetically excited network of capacitors and resistors using a systems identification framework. Standard models that assume integral order dynamics are augmented to incorporate fractional order dynamics. This enables us to relate more faithfully the modeled responses to those reported in the Dielectrics literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.