867 resultados para 230118 Optimisation
Resumo:
As a part of vital infrastructure and transportation network, bridge structures must function safely at all times. Bridges are designed to have a long life span. At any point in time, however, some bridges are aged. The ageing of bridge structures, given the rapidly growing demand of heavy and fast inter-city passages and continuous increase of freight transportation, would require diligence on bridge owners to ensure that the infrastructure is healthy at reasonable cost. In recent decades, a new technique, structural health monitoring (SHM), has emerged to meet this challenge. In this new engineering discipline, structural modal identification and damage detection have formed a vital component. Witnessed by an increasing number of publications is that the change in vibration characteristics is widely and deeply investigated to assess structural damage. Although a number of publications have addressed the feasibility of various methods through experimental verifications, few of them have focused on steel truss bridges. Finding a feasible vibration-based damage indicator for steel truss bridges and solving the difficulties in practical modal identification to support damage detection motivated this research project. This research was to derive an innovative method to assess structural damage in steel truss bridges. First, it proposed a new damage indicator that relies on optimising the correlation between theoretical and measured modal strain energy. The optimisation is powered by a newly proposed multilayer genetic algorithm. In addition, a selection criterion for damage-sensitive modes has been studied to achieve more efficient and accurate damage detection results. Second, in order to support the proposed damage indicator, the research studied the applications of two state-of-the-art modal identification techniques by considering some practical difficulties: the limited instrumentation, the influence of environmental noise, the difficulties in finite element model updating, and the data selection problem in the output-only modal identification methods. The numerical (by a planer truss model) and experimental (by a laboratory through truss bridge) verifications have proved the effectiveness and feasibility of the proposed damage detection scheme. The modal strain energy-based indicator was found to be sensitive to the damage in steel truss bridges with incomplete measurement. It has shown the damage indicator's potential in practical applications of steel truss bridges. Lastly, the achievement and limitation of this study, and lessons learnt from the modal analysis have been summarised.
Resumo:
The review details the development of the Subunit Vaccine Group at the University of Cape Town, from its beginnings as a plant virology laboratory in the 1980s. The investigation and development of Human papillomavirus (HPV) and Human immunodeficiency vaccine candidates are covered in detail, with an emphasis on how this work allowed the evolution of a systematic approach to the optimisation of expression of these and other proteins especially in plants, but also in insect cell culture. We discuss various insights gained during our work, such as approaches to codon optimisation, use of different vector systems and plant hosts, intracellular targetting and gene modification. The future prospects for both our work and for the field of plant-made vaccines in general, are discussed. © 2011 Landes Bioscience.
Resumo:
Optimisation of Organic Rankine Cycle (ORCs) for binary-cycle geothermal applications could play a major role in determining the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration: the selection of working fluid and appropriate operating conditions as well as optimisation of the turbine design for those conditions will determine the amount of power that can be extracted from a resource. In this paper, we present the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow machines based on a number of promising ORC systems that use five different working fluids: R134a, R143a, R236fa, R245fa and n-Pentane. Preliminary meanline analysis lead to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139–289 mm rotor diameter). The highest performing cycle, based on R134a, was found to produce 33% more net power from a 150 °C resource flowing at 10 kg/s than the lowest performing cycle, based on n-Pentane.
Resumo:
Optimisation of Organic Rankine Cycles (ORCs) for binary-cycle geothermal applications could play a major role in the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration. Due to the temperature differences in geothermal resources a one-size-fits-all approach to surface power infrastructure is not appropriate. Furthermore, the traditional use of steam as a working fluid does not seem practical due to the low temperatures of many resources. A variety of organic fluids with low boiling points may be utilised as ORC working fluids in binary power cycle loops. Due to differences in thermodynamic properties, certain fluids are able to extract more heat from a given resource than others over certain temperature and pressure ranges. This enables the tailoring of power cycle infrastructure to best match the geothermal resource through careful selection of the working fluid and turbine design optimisation to yield the optimum overall cycle performance. This paper presents the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow turbines based on a selection of promising ORC cycles using five different high-density working fluids: R134a, R143a, R236fa, R245fa and n-Pentane at sub- or trans-critical conditions. Numerous studies published compare a variety of working fluids for various ORC configurations. However, there is little information specifically pertaining to the design and implementation of ORCs using realistic radial turbine designs in terms of pressure ratios, inlet pressure, rotor size and rotational speed. Preliminary 1D analysis leads to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139289 mm rotor diameter). The highest performing cycle (R134a) was found to produce 33% more net power from a 150°C resource flowing at 10 kg/s than the lowest performing cycle (n-Pentane).
A hybrid simulation framework to assess the impact of renewable generators on a distribution network
Resumo:
With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.
Resumo:
The use of Bayesian methodologies for solving optimal experimental design problems has increased. Many of these methods have been found to be computationally intensive for design problems that require a large number of design points. A simulation-based approach that can be used to solve optimal design problems in which one is interested in finding a large number of (near) optimal design points for a small number of design variables is presented. The approach involves the use of lower dimensional parameterisations that consist of a few design variables, which generate multiple design points. Using this approach, one simply has to search over a few design variables, rather than searching over a large number of optimal design points, thus providing substantial computational savings. The methodologies are demonstrated on four applications, including the selection of sampling times for pharmacokinetic and heat transfer studies, and involve nonlinear models. Several Bayesian design criteria are also compared and contrasted, as well as several different lower dimensional parameterisation schemes for generating the many design points.
Resumo:
The aim of this paper is to implement a Game-Theory based offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. The goal of this work is then to develop a Multi-Objective (MO) optimisation tool able to provide a set of optimal solutions for the inspection task, given the environment data, the mission requirements and the definition of the objectives to minimise. Results indicate the robustness and capability of the method to find the trade-off between the Pareto-optimal solutions.
Resumo:
This paper presents a novel evolutionary computation approach to three-dimensional path planning for unmanned aerial vehicles (UAVs) with tactical and kinematic constraints. A genetic algorithm (GA) is modified and extended for path planning. Two GAs are seeded at the initial and final positions with a common objective to minimise their distance apart under given UAV constraints. This is accomplished by the synchronous optimisation of subsequent control vectors. The proposed evolutionary computation approach is called synchronous genetic algorithm (SGA). The sequence of control vectors generated by the SGA constitutes to a near-optimal path plan. The resulting path plan exhibits no discontinuity when transitioning from curve to straight trajectories. Experiments and results show that the paths generated by the SGA are within 2% of the optimal solution. Such a path planner when implemented on a hardware accelerator, such as field programmable gate array chips, can be used in the UAV as on-board replanner, as well as in ground station systems for assisting in high precision planning and modelling of mission scenarios.
Resumo:
Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.
Resumo:
This paper proposes a unique and innovative approach to integrate transit signal priority control into a traffic adaptive signal control strategy. The proposed strategy was named OSTRAC (Optimized Strategy for integrated TRAffic and TRAnsit signal Control). The cornerstones of OSTRAC include an online microscopic traffic f low prediction model and a Genetic Algorithm (GA) based traffic signal timing module. A sensitivity analysis was conducted to determine the critical GA parameters. The developed traffic f low model demonstrated reliable prediction results through a test. OSTRAC was evaluated by comparing its performance to three other signal control strategies. The evaluation results revealed that OSTRAC efficiently and effectively reduced delay time of general traffic and also transit vehicles.
Resumo:
This paper is concerned with the optimal path planning and initialization interval of one or two UAVs in presence of a constant wind. The method compares previous literature results on synchronization of UAVs along convex curves, path planning and sampling in 2D and extends it to 3D. This method can be applied to observe gas/particle emissions inside a control volume during sampling loops. The flight pattern is composed of two phases: a start-up interval and a sampling interval which is represented by a semi-circular path. The methods were tested in four complex model test cases in 2D and 3D as well as one simulated real world scenario in 2D and one in 3D.
Resumo:
In this paper we construct earthwork allocation plans for a linear infrastructure road project. Fuel consumption metrics and an innovative block partitioning and modelling approach are applied to reduce costs. 2D and 3D variants of the problem were compared to see what effect, if any, occurs on solution quality. 3D variants were also considered to see what additional complexities and difficulties occur. The numerical investigation shows a significant improvement and a reduction in fuel consumption as theorised. The proposed solutions differ considerably from plans that were constructed for a distance based metric as commonly used in other approaches. Under certain conditions, 3D problem instances can be solved optimally as 2D problems.
Resumo:
The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots.
Resumo:
Scaffolds for bone tissue engineering should be designed to optimize cell migration, enhance new bone formation and give mechanical support. In the present study, we used polycaprolactone-tricalciumphosphate (PCL/TCP) scaffolds with two different fibre lay down patterns which were coated with hydroxyapatite and gelatine as an approach for optimizing bone regeneration in a critical sized calvarial defect. After 12 weeks bone regeneration was quantified using microCT analysis, biomechanical testing and histological evaluation. Notably, the experimental groups containing coated scaffolds showed lower bone formation and lower biomechanical properties within the defect compared to the uncoated scaffolds. Surprisingly, the different lay down pattern of the fibres resulted in different bone formation and biomechanical properties; namely 0/60/120° scaffolds revealed lower bone formation and biomechanical properties compared to the 0/90° scaffolds in all the experimental groups. The different architecture of the scaffold fibres may have an effect on nutrition supply as well as the attachment of the newly formed matrix to the scaffold. Therefore, future bone regeneration strategies utilising scaffolds should consider scaffold architecture as an important factor during the scaffold optimisation stages in order to move closer to a clinical application.
Resumo:
Using Monte Carlo simulation for radiotherapy dose calculation can provide more accurate results when compared to the analytical methods usually found in modern treatment planning systems, especially in regions with a high degree of inhomogeneity. These more accurate results acquired using Monte Carlo simulation however, often require orders of magnitude more calculation time so as to attain high precision, thereby reducing its utility within the clinical environment. This work aims to improve the utility of Monte Carlo simulation within the clinical environment by developing techniques which enable faster Monte Carlo simulation of radiotherapy geometries. This is achieved principally through the use new high performance computing environments and simpler alternative, yet equivalent representations of complex geometries. Firstly the use of cloud computing technology and it application to radiotherapy dose calculation is demonstrated. As with other super-computer like environments, the time to complete a simulation decreases as 1=n with increasing n cloud based computers performing the calculation in parallel. Unlike traditional super computer infrastructure however, there is no initial outlay of cost, only modest ongoing usage fees; the simulations described in the following are performed using this cloud computing technology. The definition of geometry within the chosen Monte Carlo simulation environment - Geometry & Tracking 4 (GEANT4) in this case - is also addressed in this work. At the simulation implementation level, a new computer aided design interface is presented for use with GEANT4 enabling direct coupling between manufactured parts and their equivalent in the simulation environment, which is of particular importance when defining linear accelerator treatment head geometry. Further, a new technique for navigating tessellated or meshed geometries is described, allowing for up to 3 orders of magnitude performance improvement with the use of tetrahedral meshes in place of complex triangular surface meshes. The technique has application in the definition of both mechanical parts in a geometry as well as patient geometry. Static patient CT datasets like those found in typical radiotherapy treatment plans are often very large and present a significant performance penalty on a Monte Carlo simulation. By extracting the regions of interest in a radiotherapy treatment plan, and representing them in a mesh based form similar to those used in computer aided design, the above mentioned optimisation techniques can be used so as to reduce the time required to navigation the patient geometry in the simulation environment. Results presented in this work show that these equivalent yet much simplified patient geometry representations enable significant performance improvements over simulations that consider raw CT datasets alone. Furthermore, this mesh based representation allows for direct manipulation of the geometry enabling motion augmentation for time dependant dose calculation for example. Finally, an experimental dosimetry technique is described which allows the validation of time dependant Monte Carlo simulation, like the ones made possible by the afore mentioned patient geometry definition. A bespoke organic plastic scintillator dose rate meter is embedded in a gel dosimeter thereby enabling simultaneous 3D dose distribution and dose rate measurement. This work demonstrates the effectiveness of applying alternative and equivalent geometry definitions to complex geometries for the purposes of Monte Carlo simulation performance improvement. Additionally, these alternative geometry definitions allow for manipulations to be performed on otherwise static and rigid geometry.