999 resultados para 1995_12042339 CTD-28 5400704
Resumo:
Theoretical investigations have been performed to analyze and compare the link power budget and power dissipation of a 28 Gb/s datacommunication system for data center switch scenarios using NRZ, PAM-4, CAP-16 and 16-QAM-OFDM modulation schemes. © 2012 IEEE.
Resumo:
Theoretical investigations have been carried out to analyze and compare the link power budget and power dissipation of non-return-to-zero (NRZ), pulse amplitude modulation-4 (PAM-4), carrierless amplitude and phase modulation-16 (CAP-16) and 16-quadrature amplitude modulation-orthogonal frequency division multiplexing (16-QAM-OFDM) systems for data center interconnect scenarios. It is shown that for multimode fiber (MMF) links, NRZ modulation schemes with electronic equalization offer the best link power budget margins with the least power dissipation for short transmission distances up to 200 m; while OOFDM is the only scheme which can support a distance of 300 m albeit with power dissipation as high as 4 times that of NRZ. For short single mode fiber (SMF) links, all the modulation schemes offer similar link power budget margins for fiber lengths up to 15 km, but NRZ and PAM-4 are preferable due to their system simplicity and low power consumption. For lengths of up to 30 km, CAP-16 and OOFDM are required although the schemes consume 2 and 4 times as much power respectively compared to that of NRZ. OOFDM alone allows link operation up to 35 km distances. © 1983-2012 IEEE.
Resumo:
An 850 nm vertical-cavity surface-emitting laser is modulated at 28 Gb/s using pulseamplitude modulation with three levels. Unequalized transmission over 100 m of OM3 MMF is demonstrated, with advantages over NRZ and PAM4 modulation. © 2012 OSA.
Resumo:
An 850 nm vertical-cavity surface-emitting laser is modulated at 28 Gb/s using pulseamplitude modulation with three levels. Unequalized transmission over 100 m of OM3 MMF is demonstrated, with advantages over NRZ and PAM4 modulation. © OSA 2012.
Resumo:
The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.
Resumo:
A flat, fully strain-relaxed Si0.72Ge0.28 thin film was grown on Si (1 0 0) substrate with a combination of thin low-temperature (LT) Ge and LT-Si0.72Ge0.28 buffer layers by ultrahigh vacuum chemical vapor deposition. The strain relaxation ratio in the Si0.72Ge0.28 film was enhanced up to 99% with the assistance of three-dimensional Ge islands and point defects introduced in the layers, which furthermore facilitated an ultra-low threading dislocation density of 5 x 10(4) cm (2) for the top SiGe film. More interestingly, no cross-hatch pattern was observed on the SiGe surface and the surface root-mean-square roughness was less than 2 nm. The temperature for the growth of LT-Ge layer was optimized to be 300 degrees C. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
于G批量导入至Hzhangdi
Resumo:
于G批量导入至Hzhangdi
Resumo:
于2010-11-23批量导入
Resumo:
研究了高电荷态离子129Xe28+轰击金属Au和Mo表面产生的特征X射线谱。实验结果表明,在入射离子的电荷态和能量相同的条件下,对于核电荷数较小、原子质量较轻的靶原子,只有其内壳层的电子才能被激发而产生X射线,而核电荷数较大、原子质量较重的靶原子只有其较外壳层的电子能被激发而产生X射线。特征X射线的产额随入射离子动能的增加而增加。