843 resultados para “Hybrid” implementation model
Resumo:
This paper presents the development of a combined experimental and numerical approach to study the anaerobic digestion of both the wastes produced in a biorefinery using yeast for biodiesel production and the wastes generated in the preceding microbial biomass production. The experimental results show that it is possible to valorise through anaerobic digestion all the tested residues. In the implementation of the numerical model for anaerobic digestion, a procedure for the identification of its parameters needs to be developed. A hybrid search Genetic Algorithm was used, followed by a direct search method. In order to test the procedure for estimation of parameters, first noise-free data was considered and a critical analysis of the results obtain so far was undertaken. As a demonstration of its application, the procedure was applied to experimental data.
Resumo:
Molecular radiotherapy (MRT) is a fast developing and promising treatment for metastasised neuroendocrine tumours. Efficacy of MRT is based on the capability to selectively "deliver" radiation to tumour cells, minimizing administered dose to normal tissues. Outcome of MRT depends on the individual patient characteristics. For that reason, personalized treatment planning is important to improve outcomes of therapy. Dosimetry plays a key role in this setting, as it is the main physical quantity related to radiation effects on cells. Dosimetry in MRT consists in a complex series of procedures ranging from imaging quantification to dose calculation. This doctoral thesis focused on several aspects concerning the clinical implementation of absorbed dose calculations in MRT. Accuracy of SPECT/CT quantification was assessed in order to determine the optimal reconstruction parameters. A model of PVE correction was developed in order to improve the activity quantification in small volume, such us lesions in clinical patterns. Advanced dosimetric methods were compared with the aim of defining the most accurate modality, applicable in clinical routine. Also, for the first time on a large number of clinical cases, the overall uncertainty of tumour dose calculation was assessed. As part of the MRTDosimetry project, protocols for calibration of SPECT/CT systems and implementation of dosimetry were drawn up in order to provide standard guidelines to the clinics offering MRT. To estimate the risk of experiencing radio-toxicity side effects and the chance of inducing damage on neoplastic cells is crucial for patient selection and treatment planning. In this thesis, the NTCP and TCP models were derived based on clinical data as help to clinicians to decide the pharmaceutical dosage in relation to the therapy control and the limitation of damage to healthy tissues. Moreover, a model for tumour response prediction based on Machine Learning analysis was developed.
Resumo:
The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.
Resumo:
The present work proposes different approaches to extend the mathematical methods of supervisory energy management used in terrestrial environments to the maritime sector, that diverges in constraints, variables and disturbances. The aim is to find the optimal real-time solution that includes the minimization of a defined track time, while maintaining the classical energetic approach. Starting from analyzing and modelling the powertrain and boat dynamics, the energy economy problem formulation is done, following the mathematical principles behind the optimal control theory. Then, an adaptation aimed in finding a winning strategy for the Monaco Energy Boat Challenge endurance trial is performed via ECMS and A-ECMS control strategies, which lead to a more accurate knowledge of energy sources and boat’s behaviour. The simulations show that the algorithm accomplishes fuel economy and time optimization targets, but the latter adds huge tuning and calculation complexity. In order to assess a practical implementation on real hardware, the knowledge of the previous approaches has been translated into a rule-based algorithm, that let it be run on an embedded CPU. Finally, the algorithm has been tuned and tested in a real-world race scenario, showing promising results.
Resumo:
Isolated DC-DC converters play a significant role in fast charging and maintaining the variable output voltage for EV applications. This study aims to investigate the different Isolated DC-DC converters for onboard and offboard chargers, then, once the topology is selected, study the control techniques and, finally, achieve a real-time converter model to accomplish Hardware-In-The-Loop (HIL) results. Among the different isolated DC-DC topologies, the Dual Active Bridge (DAB) converter has the advantage of allowing bidirectional power flow, which enables operating in both Grid to Vehicle (G2V) and Vehicle to Grid (V2G) modalities. Recently, DAB has been used in the offboard chargers for high voltage applications due to SiC and GaN MOSFETs; this new technology also allows the utilization of higher switching frequencies. By empowering soft switching techniques to reduce switching losses, higher switching frequency operation is possible in DAB. There are four phase shift control techniques for the DAB converter. They are Single Phase shift, Extended Phase shift, Dual Phase shift, Triple Phase shift controls. This thesis considers two control strategies; Single-Phase, and Dual-Phase shifts, to understand the circulating currents, power losses, and output capacitor size reduction in the DAB. Hardware-In-The-Loop (HIL) experiments are carried out on both controls with high switching frequencies using the PLECS software tool and the RT box supporting the PLECS. Root Mean Square Error is also calculated for steady-state values of output voltage with different sampling frequencies in both the controls to identify the achievable sampling frequency in real-time. DSP implementation is also executed to emulate the optimized DAB converter design, and final real-time simulation results are discussed for both the Single-Phase and Dual-Phase shift controls.
Resumo:
This thesis focuses on the investigation and the implementation of different observers for the estimation of the roll angle of a motorbike. The central core of the activity is applying a Model-Based design in order to outline, simulate and implement the filters with the aim of a final comparison of the performances. This approach is crucially underlined among the chapters that articulate this document: first the design and tuning of an Extended Kalman Filter and a Complementary Filter in a pure simulation environment emphasize the most accurate choice for the particular problem. After this, several steps were performed in order to move from the aforementioned simulation environment to a real hardware application. In conclusion, several sensor configurations were tested and compared in order to highlight which sensor suite gives the best performances.
Resumo:
Recent years have seen a focus on responding to student expectations in higher education. As a result, a number of technology-enhanced learning (TEL) policies have stipulated a requirement for a minimum virtual learning environment (VLE) standard to provide a consistent student experience. This paper offers insight into an under-researched area of such a VLE standard policy development using a case study of one university. With reference to the implementation staircase model, this study takes cue from the view that an institutional VLE template can affect lower levels directly, sidestepping the chain in the implementation staircase. The Group's activity whose remit is to design and develop a VLE template, therefore, becomes significant. The study, drawing on activity theory, explores the mediating role of such a Group. Factors of success and sources of tension are analysed to understand the interaction between the individuals and the collective agency of Group members. The paper identifies implications to practice for similar TEL development projects. Success factors identified demonstrated the importance of good project management principles, establishing clear rules and division of labour for TEL development groups. One key finding is that Group members are needed to draw on both different and shared mediating artefacts, supporting the conclusion that the nature of the group's composition and the situated expertise of its members are crucial for project success. The paper's theoretical contribution is an enhanced representation of a TEL policy implementation staircase.
Resumo:
This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.
Resumo:
The aim of this thesis is to discuss and develop the Unified Patent Court project to account for the role it could play in implementing judicial specialisation in the Intellectual Property field. To provide an original contribution to the existing literature on the topic, this work addresses the issue of how the Unified Patent Court could relate to the other forms of judicial specialisation already operating in the European Union context. This study presents a systematic assessment of the not-yet-operational Unified Patent Court within the EU judicial system, which has recently shown a trend towards being developed outside the institutional framework of the European Union Court of Justice. The objective is to understand to what extent the planned implementation of the Unified Patent Court could succeed in responding to the need for specialisation and in being compliant with the EU legal and constitutional framework. Using the Unified Patent Court as a case study, it is argued that specialised courts in the field of Intellectual Property have a significant role to play in the European judicial system and offer an adequate response to the growing complexity of business operations and relations. The significance of this study is to analyse whether the UPC can still be considered as an appropriate solution to unify the European patent litigation system. The research considers the significant deficiencies, which risks having a negative effect on the European Union institutional procedures. In this perspective, this work aims to make a contribution in identifying the potential negative consequences of this reform. It also focuses on considering different alternatives for a European patent system, which could effectively promote innovation in Europe.
Resumo:
Biobanks are key infrastructures in data-driven biomedical research. The counterpoint of this optimistic vision is the reality of biobank governance, which must address various ethical, legal and social issues, especially in terms of open consent, privacy and secondary uses which, if not sufficiently resolved, may undermine participants’ and society’s trust in biobanking. The effect of the digital paradigm on biomedical research has only accentuated these issues by adding new pressure for the data protection of biobank participants against the risks of covert discrimination, abuse of power against individuals and groups, and critical commercial uses. Moreover, the traditional research-ethics framework has been unable to keep pace with the transformative developments of the digital era, and has proven inadequate in protecting biobank participants and providing guidance for ethical practices. To this must be added the challenge of an increased tendency towards exploitation and the commercialisation of personal data in the field of biomedical research, which may undermine the altruistic and solidaristic values associated with biobank participation and risk losing alignment with societal interests in biobanking. My research critically analyses, from a bioethical perspective, the challenges and the goals of biobank governance in data-driven biomedical research in order to understand the conditions for the implementation of a governance model that can foster biomedical research and innovation, while ensuring adequate protection for biobank participants and an alignment of biobank procedures and policies with society’s interests and expectations. The main outcome is a conceptualisation of a socially-oriented and participatory model of biobanks by proposing a new ethical framework that relies on the principles of transparency, data protection and participation to tackle the key challenges of biobanks in the digital age and that is well-suited to foster these goals.
Resumo:
This Doctoral Thesis aims to study and develop advanced and high-efficient battery chargers for full electric and plug-in electric cars. The document is strictly industry-oriented and relies on automotive standards and regulations. In the first part a general overview about wireless power transfer battery chargers (WPTBCs) and a deep investigation about international standards are carried out. Then, due to the highly increasing attention given to WPTBCs by the automotive industry and considering the need of minimizing weight, size and number of components this work focuses on those architectures that realize a single stage for on-board power conversion avoiding the implementation of the DC/DC converter upstream the battery. Based on the results of the state-of-the-art, the following sections focus on two stages of the architecture: the resonant tank and the primary DC/AC inverter. To reach the maximum transfer efficiency while minimizing weight and size of the vehicle assembly a coordinated system level design procedure for resonant tank along with an innovative control algorithm for the DC/AC primary inverter is proposed. The presented solutions are generalized and adapted for the best trade-off topologies of compensation networks: Series-Series and Series-Parallel. To assess the effectiveness of the above-mentioned objectives, validation and testing are performed through a simulation environment, while experimental test benches are carried out by the collaboration of Delft University of Technology (TU Delft).
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of global warming. Recently, several metropolitan cities introduced Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce localized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles, which usually work in depleting mode. In order to address these issues, the present thesis presents a viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event along a selected route. The battery energy needed, in the form of a minimum State of Charge (SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That value is then fed to both a Rule-Based Strategy, developed specifically for this application, and an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this approach has been tested with a Connected Hardware-in-the-Loop (C-HiL) on a driving cycle measured on-road, stimulating the predictions with multiple re-routings. However, even if hybrid electric vehicles have been recognized as a valid solution in response to increasingly tight regulations, the reduced engine load and the repeated engine starts and stops may reduce substantially the temperature of the exhaust after-treatment system (EATS), leading to relevant issues related to pollutant emission control. In this context, electrically heated catalysts (EHCs) represent a promising solution to ensure high pollutant conversion efficiency without affecting engine efficiency and performance. This work aims at studying the advantages provided by the introduction of a predictive EHC control function for a light-duty Diesel plug-in hybrid electric vehicle (PHEV) equipped with a Euro 7-oriented EATS. Based on the knowledge of future driving scenarios provided by vehicular connectivity, engine first start can be predicted and therefore an EATS pre-heating phase can be planned.
Resumo:
Since the turn of the century, fisheries have maintained a steady growth rate, while aquaculture has experienced a more rapid expansion. Aquaculture can offer EU consumers more diverse, healthy, and sustainable food options, some of which are more popular elsewhere. To develop the sector, the EU is investing heavily. The EU supports innovative projects that promote the sustainable development of seafood sectors and food security. Priority 3 promotes sector development through innovation dissemination. This doctoral dissertation examined innovation transfer in the Italian aquaculture sector, specifically the adoption of innovative tools, using a theoretical model to better understand the complexity of these processes. The work focused on innovation adoption, emphasising that it is the end of a well-defined process. The Awareness Knowledge Adoption Implementation Effectiveness (AKAIE) model was created to better analyse post-adoption phases and evaluate technology adoption implementation and impact. To identify AKAIE drivers and barriers, aquaculture actors were consulted. "Perceived complexity"—barriers to adoption that are strongly influenced by contextual factors—has been used to examine their perspectives (i.e. socio-economic, institutional, cultural ones). The new model will contextualise the sequence based on technologies, entrepreneur traits, corporate and institutional contexts, and complexity perception, the sequence's central node. Technology adoption can also be studied by examining complexity perceptions along the AKAIE sequence. This study proposes a new model to evaluate the diffusion of a given technology, offering the policy maker the possibility to be able to act promptly across the process. The development of responsible policies for evaluating the effectiveness of innovation is more necessary than ever, especially to orient strategies and interventions in the face of major scenarios of change.
Resumo:
The Internet of Things (IoT) has grown rapidly in recent years, leading to an increased need for efficient and secure communication between connected devices. Wireless Sensor Networks (WSNs) are composed of small, low-power devices that are capable of sensing and exchanging data, and are often used in IoT applications. In addition, Mesh WSNs involve intermediate nodes forwarding data to ensure more robust communication. The integration of Unmanned Aerial Vehicles (UAVs) in Mesh WSNs has emerged as a promising solution for increasing the effectiveness of data collection, as UAVs can act as mobile relays, providing extended communication range and reducing energy consumption. However, the integration of UAVs and Mesh WSNs still poses new challenges, such as the design of efficient control and communication strategies. This thesis explores the networking capabilities of WSNs and investigates how the integration of UAVs can enhance their performance. The research focuses on three main objectives: (1) Ground Wireless Mesh Sensor Networks, (2) Aerial Wireless Mesh Sensor Networks, and (3) Ground/Aerial WMSN integration. For the first objective, we investigate the use of the Bluetooth Mesh standard for IoT monitoring in different environments. The second objective focuses on deploying aerial nodes to maximize data collection effectiveness and QoS of UAV-to-UAV links while maintaining the aerial mesh connectivity. The third objective investigates hybrid WMSN scenarios with air-to-ground communication links. One of the main contribution of the thesis consists in the design and implementation of a software framework called "Uhura", which enables the creation of Hybrid Wireless Mesh Sensor Networks and abstracts and handles multiple M2M communication stacks on both ground and aerial links. The operations of Uhura have been validated through simulations and small-scale testbeds involving ground and aerial devices.
Resumo:
Resolution of multisensory deficits has been observed in teenagers with Autism Spectrum Disorders (ASD) for complex, social speech stimuli; this resolution extends to more basic multisensory processing, involving low-level stimuli. In particular, a delayed transition of multisensory integration (MSI) from a default state of competition to one of facilitation has been observed in ASD children. In other terms, the complete maturation of MSI is achieved later in ASD. In the present study a neuro-computational model is used to reproduce some patterns of behavior observed experimentally, modeling a bisensory reaction time task, in which auditory and visual stimuli are presented in random sequence alone (A or V) or together (AV). The model explains how the default competitive state can be implemented via mutual inhibition between primary sensory areas, and how the shift toward the classical multisensory facilitation, observed in adults, is the result of inhibitory cross-modal connections becoming excitatory during the development. Model results are consistent with a stronger cross-modal inhibition in ASD children, compared to normotypical (NT) ones, suggesting that the transition toward a cooperative interaction between sensory modalities takes longer to occur. Interestingly, the model also predicts the difference between unisensory switch trials (in which sensory modality switches) and unisensory repeat trials (in which sensory modality repeats). This is due to an inhibitory mechanism, characterized by a slow dynamics, driven by the preceding stimulus and inhibiting the processing of the incoming one, when of the opposite sensory modality. These findings link the cognitive framework delineated by the empirical results to a plausible neural implementation.