932 resultados para Óxido de alumínio
Resumo:
Nowadays there has been a major breakthrough in the aerospace area, with regard to rocket launches to research, experiments, telemetry system, remote sensing, radar system (tracking and monitoring), satellite communications system and insertion of satellites in orbit. This work aims at the application of a circular cylindrical microstrip antenna, ring type, and other cylindrical rectangular in structure of a rocket or missile to obtain telemetry data, operating in the range of 2 to 4 GHz, in S-band. Throughout this was developed just the theoretical analysis of the Transverse transmission line method which is a method of rigorous analysis in spectral domain, for use in rockets and missiles. This analyzes the spread in the direction "ρ" , transverse to dielectric interfaces "z" and "φ", for cylindrical coordinates, thus taking the general equations of electromagnetic fields in function of e [1]. It is worth mentioning that in order to obtain results, simulations and analysis of the structure under study was used HFSS program (High Frequency Structural Simulator) that uses the finite element method. With the theory developed computational resources were used to obtain the numerical calculations, using Fortran Power Station, Scilab and Wolfram Mathematica ®. The prototype was built using, as a substrate, the ULTRALAM ® 3850, of Rogers Corporation, and an aluminum plate as a cylindrical structure used to support. The agreement between the measured and simulated results validate the established processes. Conclusions and suggestions are presented for continuing this work
Resumo:
A possibilidade do desenvolvimento de técnicas de aplicação de produtos fitossanitários mais seguras, com menores volumes de calda, número de aplicações e deriva, aliados à necessidade de se obter melhores níveis de controle dos agentes nocivos às plantas cultivadas, justificam o uso da assistência de ar junto à barra de pulverização. Com o objetivo de avaliar a deposição da pulverização na cultura do feijoeiro (Phaseolus vulgaris), em presença e ausência da assistência de ar junto à barra de pulverização, com diferentes pontas de pulverização e volumes de calda, foi conduzido um experimento em delineamento inteiramente casualizado, utilizando-se como traçador o óxido cuproso. Alvos artificiais (papel filtro com 3 x 3 cm) foram afixados nas superfícies adaxial e abaxial de folíolos posicionados nos terços superior e inferior de plantas, selecionadas ao acaso, distribuídas perpendicularmente ao deslocamento do pulverizador. Após a aplicação do traçador os coletores foram lavados individualmente em solução extratora de ácido nítrico a 1,0 mol L-1. A determinação quantitativa dos depósitos foi realizada com o uso da espectrofotometria de absorção atômica. A assistência de ar junto à barra de pulverização não aumentou a deposição do traçador em folíolos de feijoeiro, aos 48 dias após a emergência da cultura.
Resumo:
A análise da fluorescência da clorofila vem sendo largamente utilizada no entendimento dos mecanismos da fotossíntese propriamente dito, bem como na avaliação da capacidade fotossintética alterada com a aplicação de herbicidas. O consumo de água pelas plantas é uma maneira também de avaliar a atuação dos herbicidas nas plantas daninhas. O objetivo deste trabalho foi avaliar a fluorescência através da taxa de transporte de elétrons, consumo de água e fitointoxicação de Brachiaria decumbens após aplicação de quatro herbicidas de diferentes mecanismos de ação. Aos 30 dias após a semeadura de B. decumbens, as plantas foram arrancadas dos tubetes e preparadas para os tratamentos. Elas tiveram o sistema radicular colocado em tubos falcon preenchidos com água, e a superfície dos falcon foi isolada com papel-alumínio, para evitar evaporação do sistema. Os herbicidas aplicados foram: glyphosate, haloxyfop-methyl, diuron e amicarbazone. A aplicação foi feita com um pulverizador estacionário instalado em laboratório; após a aplicação dos tratamentos, as plantas foram mantidas em casa de vegetação. Foi avaliada a taxa de transporte de elétrons (ETR), o consumo de água e a fitointoxicação das plantas em vários períodos após o início do experimento. Os dados de ETR e fitointoxicação foram expressos em porcentagem da testemunha e submetidos à análise de variância e à comparação das médias. Para o consumo de água, os dados foram acumulados e ajustados por modelos de regressão. Assim, pode-se dizer que as plantas de B. decumbens tiveram respostas diferentes aos herbicidas aplicados, e o consumo de água das plantas está relacionado diretamente com o transporte de elétrons. A metodologia fundamentada no fluorômetro mostrou-se adequada para verificar a intoxicação antecipada em B. de cumbens submetidas ao amicarbazone e diuron antes mesmo da verificação visual de intoxicação.
Resumo:
The conversion of solar energy in electric with photo-voltaic cells has been carried through exclusively with devices of semiconducting junction. To put this situation comes moving for better in them last years, thanks to a new technology of production of known solar cells as Dye Solar Cell. This proposal aims at to develop a DSC having as dye lavonoides of the Capsicum frutescens (malagueta pepper). Front is considered to evaluate the photo-voltaic parameters varies it regions of the visible specter, as well as a good efficiency of conversion
Resumo:
The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement
Resumo:
It s presented a solar collector to be used in a system for heating bath water, whose main characteristic is its low cost. The collector consists of five plates of PVC with 10 mm thick, 200 mm in width and 1400mm in length, with an area equal to 1.4 square meters. The plates were connected in parallel to the ends of PVC tubes of 40 mm and 32 mm. The plates were coated on one side with aluminum sheets of soft drinks and beers cans open. The system worked on a thermosiphon and was tested in two configurations: the plates uncoated and coated with aluminum material, to determine the influence of material on the efficiency of the collector. For both configurations was used EPS plates below the surface to minimize heat losses from the botton. The thermal reservoir of the heating system is, also, alternative and low cost, since it was constructed from a polyethylene tank for storing water, with volume of 150 end 200 liters. It will be presented the thermal efficiency, heat loss, water temperature of the thermal reservoir at the end of the process and simulation of baths for a house with four residents. The will be demonstrated thermal, economic and material viability of the proposed collector, whose main innovation is the use of recyclables materials, cans of beer and soft drinks, to increase the temperature of the absorber plate.
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint flat black for better absorption of sunlight. The system worked on a thermosiphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. It was determined the most efficient configuration for the correct purpose. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
The nanometric powders have special features that usually result in new properties, originating applications or expanding them in various fields of knowledge. Because having a high area/volume ratio, phenomena such as superficial strength of adsorption becomes greater than the weight of the powder which makes more difficult its handling. The high power of agglomeration of these powders requires study and development of equipments to enable its management into the plasma torch. The objective of this work is to develop a powder feeder which can solve the mainly problems about insertion of powder into the thermal spray developed in the laboratory of plasmas, which are carried out with plasma torch arc not transferred (plasma spray). Therefore, it was made a aluminum s powder feeder and tests were performed to verify their operation and determine its rate of deposition by spraying powders of niobium pentoxide (Nb2O5) and titanium dioxide (TiO2) with particle sizes less than 250 mesh (<0.063 mm). We used masses of 0.5 g - 1.0 g and 1.5 g of each powder in tests lasting 15 seconds - 20 to 25 seconds for each mass. The tests were performed in two ways: at atmospheric pressure using argon gas with a flow of 9 l / min as carrier gas and through a Venturi pipe also using argon gas with a flow of 9 l / min as carrier gas and with a flow of 20 l/min as the feed gas passing through the Venturi pipe. The powder feeder developed in this paper is very easy to be handling and building, resulting in feeding rate of 0.25 cm3/min - 1.37 cm3/min. The TiO2 showed higher feeding rates than the Nb2O5 in all tests, and the best rates were obtained with tests using mass 1.5 g and time of 15 seconds, reaching feeding rate of 1.37 cm3/min. The flow of feed had low interference in feeding rate during the tests
Resumo:
Considering the constant evolution of technology in growth and the need for production techniques in the ceramics area to move forward together, we sought in this study, the research and development of polymeric precursor method to obtain inorganic ceramic pigments. Method that provides quality to obtain the precursor powders of oxides and pigments at the same time, offers time and cost advantages, such as reproducibility, purity and low temperature heat treatment, control of stoichiometry. This work used chromium nitrate and iron nitrate as precursors. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through precalcination, breakdown, thermal treatments at different temperatures of calcination (700 to 1100 oC), resulting in pigments: green for chromium oxide deposited on TiO2 (CrTiO3) and orange for iron oxide deposited on TiO2 ( FeTiO3). Noticing an increase of opacity with increasing temperature. Were performed thermal analysis (TG and ATD) in order to evaluate its thermodecomposition. The powders were also characterized by techniques such as XRD, revealing the formation of crystalline phases such as iron titanate (FeTiO3) and chrome titanate (CrTiO3), SEM, demonstrating formation of rounded particles for both oxides and Spectroscopy in the UV-Visible Region, verifying the potential variation and chromaticity os pigments. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials
Resumo:
In the present research work, composites were prepared using pine apple leaf fibres (PALF) as reinforcement with unsaturated polyester resin as matrix, incorporating with fire retardant at different compositions. The PALF was obtained from the decortication of pine apple leaves obtained from Ramada 4 from Ielmo Marinho in the State of Rio Grande do Norte. The unsaturated polyester resin and the catalyzer were bought from the local establishment. The fire retardant, aluminium tri-hydroxide - Al(OH)3 was donated by Alcoa Alumínio S.A and was used in the proportions of 20%, 40% and 60% w/w. Initially the fibres were treated with 2% NaOH for 1 hour, to remove any impurities present on the fibre surface, such as wax, fat, pectin and pectate, in order to have a better adsorption of the fibres with the matrix as well as the flame retardant. The fibre mat was prepared in a mat preparator by immersion, developed in the Textile Engineering Laboratory, at the UFRN. The composites (300x300x3 mm) were prepared by compression molding and the samples (150x25x3 mm) for analysis of the properties were cut randomly using a laser cutter. Some of the cut samples were used to measure the smoke emission and fire resistance using UL94 standard. Mechanical tension-extension and flexural properties were carried in CTGás RN and the Laboratório de Metais e Ensaios Mecânicos Engenharia de Materiais UFRN , as well as SEM studies were carried out at Núcleo de Estudos em Petróleo e Gás Natural - UFRN . From the observed results, it was noted that, there was no marked influence of the fire retardant on the mechanical properties. Also in the water absorption test, the quantity of water absorbed was less in the sample with higher concentration of fire retardant. It was also observed that the increase in the proportion of the fire retardant increased the time of burning, may be due to the compactness of the composite due to the presence of fire retardant as a filling material even though it was meant to reduce the rate of inflammability of the composite
Resumo:
In this study we used the plasma as a source of energy in the process of carbothermic reduction of rutile ore (TiO2). The rutile and graphite powders were milled for 15 h and placed in a hollow cathode discharge produced by in order to obtain titanium carbonitride directly from the reaction, was verified the influence of processing parameters of plasma temperature and time in the synthesis of TiCN. The reaction was carried out at 600, 700 and 800˚C for 3 to 4 hours in an atmosphere of nitrogen and argon. During all reactions was monitored by plasma technique of optical emission spectroscopy (EEO) to check the active species present in the process of carbothermal reduction of TiO2. The powder obtained after the reactions were characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of EEO were detected in all reactions the spectra CO and NO, and these gas-phase resulting from the reduction of TiO2. The results of X-ray diffraction confirmed the reduction, where for all conditions studied there was evidence of early reduction of TiO2 through the emergence of intermediate oxides. In the samples reduced at 600 and 700˚C, there was only the phase Ti6O11, those reduced to 800˚C appeared Ti5O9 phases, and Ti6O11 Ti7O13, confirming that the carbothermal reduction in plasma, a reduction of the ore rutile (TiO2) in a series of intermediate titanium oxide (TinO2n-1) where n varies between 5 and 10
Resumo:
The lanthanum strontium cobalt iron oxide (La1-xSrxCo1-yFeyO3 LSCF) is the most commonly used material for application as cathode in Solid Oxide Fuel Cells (SOFCs), mainly due to their high mixed ionic electronic conductivity between 600 and 800ºC. In this study, LSCF powders with different compositions were synthesized via a combination between citrate and hydrothermal methods. As-prepared powders were calcined from 700 to 900°C and then characterized by X-ray fluorescence, X-ray diffraction, thermal analyses, particle size analyses, nitrogen adsorption (BET) and scanning electronic microscopy. Films of composition La0,6Sr0,4Co0,2Fe0,8O3 (LSCF6428), powders calcined at 900°C, were screen-printed on gadolinium doped ceria (CGO) substrates and sintered between 1150 and 1200°C. The effects of level of sintering on the microstructure and electrochemical performance of electrodes were evaluated by scanning electronic microscopy and impedance spectroscopy. Area specific resistance (ASR) exhibited strong relation with the microstructure of the electrodes. The best electrochemical performance (0.18 ohm.cm2 at 800°C) was obtained for the cathode sintered at 1200°C for 2 h. The electrochemical activity can be further improved through surface activation by impregnation with PrOx, in this case the electrode area specific resistance decreases to values as low as 0.12 ohm.cm2 (800°C), 0.17 ohm.cm2 (750°C) and 0.31 ohm.cm2 (700°C). The results indicate that the citrate-hydrothermal method is suitable for the attainment of LSCF particulates with potential application as cathode component in intermediate temperature solid oxide fuel cells (IT-SOFCs)
Resumo:
The proposed design provides a solar furnace alternative, box-like, low-cost operation to be used in cooking, comprising three scrap tires to make the recycling thereof. The tires were coupled to each other, forming an enclosure, which stood on its bottom covered by a parable multiple mirrors made from a urupema (sieve indigenous) and the inner sides of the oven aluminum sheet painted black, obtained from beer cans, thus being made to obtain the increase in the concentration of solar radiation incident on the inside of the prototype studied. Two tires were attached, leaving an air layer between them, with the function of thermal insulation. The third tire aimed to support the other two and thermally insulate the bottom of the oven. Externally was placed a metal frame with flat mirrors to reflect the incident rays into the oven, having a mobility to correct the apparent motion of the sun. Its primary feature is the viability of clean, renewable energy to society by tackling the ecological damage caused by the large-scale use of wood for cooking food. The tests show that the furnace reached the maximum temperature of 123.8 °C and baking various foods such as pizza, bun, and other lasagne in an average time 50 minutes. Proves the feasibility of using the oven. Presenting still able to improve their performance with the addition of new materials, equipment and techniques
Resumo:
Currently, vegetable oils have been studied for bio-lubricants base that fits the new environmental standards. Since, in a world full of finite natural resources, mineral oils bring consequences to the environment due to its low biodegradability and toxicity, also it is important to consider that synthetic oils have a high cost The aim of this work is to obtain a biolubricant additived with oxide nanoparticles (ZnO and CuO) for better resistance to friction and wear, which is not toxic to the environment and have better adherence under boundary lubrication. The methodology consisted in the synthesis of bio-lubricants (soybean and sunflower base) by epoxidation reaction. Then, some physical-chemical analysis in bio-lubricants are made to characterize theses lubricants, such as, density, acidity, iodine value, viscosity, viscosity index. Later, the lubricants were additive with nanoparticles. The tribological performance was evaluated by the equipment HFRR (High Frequency Reciprocating Rig) consisting of a wear test ball-plan type. The characterization of wear analysis was performed by SEM / EDS. The results show that bio-lubricants may be synthesized by reaction of epoxidation with good conversion. Tribological point of view, the epoxidized oils are more effective than lubricant additived with the oxide nanoparticles, they had lower coefficients of friction and better rate of film formation in the study. However, because they are environmentally friendly, bio-lubricants gain the relevant importance in tribological field
Resumo:
The segment of the structural ceramics industry is one of the most important to the economy of Rio Grande do Norte. The supply chain makes a total of 206 companies that are distributed in 39 counties, concentrated in three regional centers: Seridó Apodi / Assu and great Natal. The ceramic industry in the state is around 80 million pieces per month, with 50,186 million of these tiles, which makes the Rio Grande do Norte one of the largest manufacturers of product in the Country. Different ceramic products can be manufactured by mixing two or more clays and accessory minerals. Mixtures acquire characteristics and form what is called the ceramic body. Refractory masses have a high melting point and thermal shock support. Its composition contains refractory clays with a little iron oxide and material fluxes. A line of semi-refractory ceramic products that stands out for its high added value are the bricks in ivory or red, used in building barbecues, fireplaces, wood stoves and braziers. The aim of this study was to use alumina-clay or silica- alumina-clay to the industrial RN, for the production of refractory bricks semi-refractory burning light. Clay and Kaolin were characterized for their chemical and mineralogical composition, immediately after ceramic bodies were made with different concentrations of the components, they were raised, pressed and sintered. After sintering the resulting products were characterized in terms of mechanical, thermal and dimensional than the characterization by X-ray diffraction and scanning electron microscopy. After obtaining the results, we concluded that the studied clay can be used for the production of semi-refractory bricks