1000 resultados para Álgebra escolar e álgebra acadêmica
Resumo:
We construct a cofibrantly generated Thomason model structure on the category of small n-fold categories and prove that it is Quillen equivalent to the standard model structure on the category of simplicial sets. An n-fold functor is a weak equivalence if and only if the diagonal of its n-fold nerve is a weak equivalence of simplicial sets. We introduce an n-fold Grothendieck construction for multisimplicial sets, and prove that it is a homotopy inverse to the n-fold nerve. As a consequence, the unit and counit of the adjunction between simplicial sets and n-fold categories are natural weak equivalences.
Resumo:
We give a unified solution the conjugacy problem in Thompson’s groups F, V , and T using strand diagrams, and we analyze the complexity of the resulting algorithms.
Resumo:
We describe an explicit relationship between strand diagrams and piecewise-linear functions for elements of Thompson’s group F. Using this correspondence, we investigate the dynamics of elements of F, and we show that conjugacy of one-bump functions can be described by a Mather-type invariant.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The trace of a square matrix can be defined by a universal property which, appropriately generalized yields the concept of "trace of an endofunctor of a small category". We review the basic definitions of this general concept and give a new construction, the "pretrace category", which allows us to obtain the trace of an endofunctor of a small category as the set of connected components of its pretrace. We show that this pretrace construction determines a finite-product preserving endofunctor of the category of small categories, and we deduce from this that the trace inherits any finite-product algebraic structure that the original category may have. We apply our results to several examples from Representation Theory obtaining a new (indirect) proof of the fact that two finite dimensional linear representations of a finite group are isomorphic if and only if they have the same character.
Resumo:
We give a survey of some recent results on Grothendieck duality. We begin with a brief reminder of the classical theory, and then launch into an overview of some of the striking developments since 2005.
Resumo:
This article presents a way to associate a Grothendieck site structure to a category endowed with a unique factorisation system of its arrows. In particular this recovers the Zariski and Etale topologies and others related to Voevodsky's cd-structures. As unique factorisation systems are also frequent outside algebraic geometry, the same construction applies to some new contexts, where it is related with known structures dened otherwise. The paper details algebraic geometrical situations and sketches only the other contexts.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Continuity of set-valued maps is hereby revisited: after recalling some basic concepts of variational analysis and a short description of the State-of-the-Art, we obtain as by-product two Sard type results concerning local minima of scalar and vector valued functions. Our main result though, is inscribed in the framework of tame geometry, stating that a closed-valued semialgebraic set-valued map is almost everywhere continuous (in both topological and measure-theoretic sense). The result –depending on stratification techniques– holds true in a more general setting of o-minimal (or tame) set-valued maps. Some applications are briefly discussed at the end.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defined by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincaré-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."