815 resultados para "Policy, legislation and regulation".
Resumo:
This paper studies the relation between coalition structures in policy processes and policy change. While different factors such as policy images, learning processes, external events, or venue shopping are important to explain policy change, coalition structures within policy processes are often neglected. However, policy change happens as a result of negotiations and coordination among coalitions within policy processes. The paper analyzes how conflict, collaboration, and power relations among coalitions of actors influence policy change in an institutional context of a consensus democracy. Empirically, I rely on a Qualitative Comparative Analysis to conduct a cross-sector comparison of the 11 most important policy processes in Switzerland between 2001 and 2006. Coalition structures with low conflict and strong collaboration among coalitions as well as structures with dominant coalitions and weak collaboration both facilitate major policy change. Competing coalitions that are separated by strong conflict but still collaborate strongly produce policy outputs that are close to the status quo.
Resumo:
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.
Resumo:
Off-site effects of soil erosion are becoming increasingly important, particularly the pollution of surface waters. In order to develop environmentally efficient and cost effective mitigation options it is essential to identify areas that bear both a high erosion risk and high connectivity to surface waters. This paper introduces a simple risk assessment tool that allows the delineation of potential critical source areas (CSA) of sediment input into surface waters concerning the agricultural areas of Switzerland. The basis are the erosion risk map with a 2 m resolution (ERM2) and the drainage network, which is extended by drained roads, farm tracks, and slope depressions. The probability of hydrological and sedimentological connectivity is assessed by combining soil erosion risk and extended drainage network with flow distance calculation. A GIS-environment with multiple-flow accumulation algorithms is used for routing runoff generation and flow pathways. The result is a high resolution connectivity map of the agricultural area of Switzerland (888,050 ha). Fifty-five percent of the computed agricultural area is potentially connected with surface waters, 45% is not connected. Surprisingly, the larger part of 34% (62% of the connected area) is indirectly connected with surface waters through drained roads, and only 21% are directly connected. The reason is the topographic complexity and patchiness of the landscape due to a dense road and drainage network. A total of 24% of the connected area and 13% of the computed agricultural area, respectively, are rated with a high connectivity probability. On these CSA an adapted land use is recommended, supported by vegetated buffer strips preventing sediment load. Even areas that are far away from open water bodies can be indirectly connected and need to be included in planning of mitigation measures. Thus, the connectivity map presented is an important decision-making tool for policy-makers and extension services. The map is published on the web and thus available for application.
Resumo:
Trade, investment and migration are strongly intertwined, being three key factors in international production. Yet, law and regulation of the three has remained highly fragmented. Trade is regulated by the WTO on the multilateral level, and through preferential trade agreements on the regional and bilateral levels – it is fragmented and complex in its own right. Investment, on the other hand, is mainly regulated through bilateral investment treaties with no strong links to the regulation of trade or migration. And, finally, migration is regulated by a web of different international, regional and bilateral agreements which focus on a variety of different aspects of migration ranging from humanitarian to economic. The problems of institutional fragmentation in international law are well known. There is no organizational forum for coherent strategy-making on the multilateral level covering all three areas. Normative regulations may thus contradict each other. Trade regulation may bring about liberalization of access for service providers, but eventually faces problems in recruiting the best people from abroad. Investors may withdraw investment without being held liable for disruptions to labour and to the livelihood and infrastructure of towns and communities affected by disinvestment. Finally, migration policies do not seem to have a significant impact as long as trade policies and investment policies are not working in a way that is conducive to reducing migration pressure, as trade and investment are simply more powerful on the regulatory level than migration. This chapter addresses the question as to how fragmentation of the three fields could be reme-died and greater coherence between these three areas of factor allocation in international economic relations and law could be achieved. It shows that migration regulation on the international level is lagging behind that on trade and investment. Stronger coordination and consideration of migration in trade and investment policy, and stronger international cooperation in migration, will provide the foundations for a coherent international architecture in the field.
Resumo:
This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation-contraction coupling and arrhythmias: Na(+) channel and Na(+) transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na(+) channel function and regulation, Na(+) channel structure and function, and Na(+) channel trafficking, sequestration and complexing.