999 resultados para wood production
Resumo:
Background - According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1), based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods - A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results - Time-weighted average concentrations not exceeded the reference value (0.75 ppm) in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm) in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p < 0.001). Moreover, the frequency of micronucleus in peripheral blood lymphocytes was significantly higher in the laboratories group than in the factory workers (p < 0.05). A moderate positive correlation was found between duration of occupational exposure to formaldehyde (years of exposure) and micronucleus frequency in peripheral blood lymphocytes (r = 0.401; p < 0.001) and in epithelial cells (r = 0.209; p < 0.01). Conclusions - The population studied is exposed to high peak concentrations of formaldehyde with a long-term exposure. These two aspects, cumulatively, can be the cause of the observed genotoxic endpoint effects. The association of these cytogenetic effects with formaldehyde exposure gives important information to risk assessment process and may also be used to assess health risks for exposed workers.
Resumo:
The first and second authors would like to thank the support of the PhD grants with references SFRH/BD/28817/2006 and SFRH/PROTEC/49517/2009, respectively, from Fundação para a Ciência e Tecnol ogia (FCT). This work was partially done in the scope of the project “Methodologies to Analyze Organs from Complex Medical Images – Applications to Fema le Pelvic Cavity”, wi th reference PTDC/EEA- CRO/103320/2008, financially supported by FCT.
Resumo:
The mechanisms of speech production are complex and have been raising attention from researchers of both medical and computer vision fields. In the speech production mechanism, the articulator’s study is a complex issue, since they have a high level of freedom along this process, namely the tongue, which instigates a problem in its control and observation. In this work it is automatically characterized the tongues shape during the articulation of the oral vowels of Portuguese European by using statistical modeling on MR-images. A point distribution model is built from a set of images collected during artificially sustained articulations of Portuguese European sounds, which can extract the main characteristics of the motion of the tongue. The model built in this work allows under standing more clearly the dynamic speech events involved during sustained articulations. The tongue shape model built can also be useful for speech rehabilitation purposes, specifically to recognize the compensatory movements of the articulators during speech production.
Resumo:
The purpose of this work was to assess the acute toxicity on male mice to a chromated copper arsenate (CCA) solution, a widespread wood preservative used in building industry until 2002. Animals were subcutaneously injected with CCA (7.2 mg/kg arsenic and 10.2 mg/kg chromium per body weight), CrO3 (10.2 mg/kg), As2O5 (7.2 mg/kg) and NaCl (0.9%) per se, during 48 h and 96 h, for histopathology, histochemistry, chromium and arsenic analysis. The results showed some histopathological changes within renal tubules lumen of CCA exposed animals (during 48 h, and 96 h), and CrO3 (for the period of 96 h). Furthermore, the renal levels of arsenic and chromium in treated animals were statistically more evident than controls. Although, the same contents of pentavalent arsenic and hexavalent chromium were injected into treated animals with CCA and with the prepared solutions of As2O5 and CrO3, a different distribution of the pattern of these compounds was observed in kidneys.
Resumo:
Chromium copper arsenate(CCA)was used for the protection of wood building material suntil the restriction by EPA in2002. During a short period of time 14–24h,a comparative nephrotoxicity study was performed regarding the effects of CCA and its compounds per se. Histopathological and histochemical features were correlated with the concentration of the total arsenic and chromium in mice kidney. Animals were subcutaneously injected with CCA(7.2mg/kg arsenic and 10.2mg/kg chromium per body weight), CrO3 (10.2 mg/kg),As2O5 (7.2 mg/kg)andNaCl(0.9%) per se. The histopathological examination of the renal sections evidenced acute tubular necrosis in the groups of animals exposed to CCA(in both periods of time). Although the same contents of pentavalent arsenic and hexavalent chromium were injected in treated animals with CCA and with the prepared solutions of As2O5 and CrO3, the arsenic concentration on kidneys of CCA-exposed animals was much higher than those in animals exposed to As2O5 (32- and28-fold higher at 14 and 24h,respectively). However,the elimination of chromium seems to occur similarly in the kidneys of animals treated with CCA and CrO3 per se. Interactions among the components of CCA result in a marked decrease of the ability of kidney to eliminate simultaneously both analytes.The nephrotoxicity of CCA was higher than its components per se, evidencing a possible synergetic effect.
Resumo:
Biodieselhas attracted considerable attention as a renewable, biodegradable, and nontoxic fuel and can contribute to solving the energy problems, significantly reducing the emission of gases which cause global warming. The first stage of this work was to simulate different alternative processes for producing biodiesel. The method used for the production of biodiesel is the transesterification of vegetable oilswith an alcohol in the presence of a catalyst. The raw materials used were palm oils and waste cooking oil. The second stage was a life cycle analysis for all alternatives under study, followed by an economic analysis for the alternatives that present minor impacts and which are more promising from an economic point of view. Finally,we proceeded to compare the different alternatives fromboth the point of view of life cycle and economic analysis. The feasibility of all processes was proven and the biodiesel obtained had good specifications. From the standpoint of life cycle analysis, the best alternative was the process of alkaline catalysiswith acid pretreatment for waste cooking oil. The economic analysis was done to the previous mentioned process and to the process that uses raw virgin oils, methanol, and sodium hydroxide. This process has lower investment costs but the process of alkaline catalysis with acid pre-treatment, whose main raw material is waste oil, is much more profitable and has less environmental impacts.
Resumo:
This study uses the process simulator ASPEN Plus and Life Cycle Assessment (LCA) to compare three process design alternatives for biodiesel production from waste vegetable oils that are: the conventional alkali-catalyzed process including a free fatty acids (FFAs) pre-treatment, the acid-catalyzed process, and the supercritical methanol process using propane as co-solvent. Results show that the supercritical methanol process using propane as co-solvent is the most environmentally favorable alternative. Its smaller steam consumption in comparison with the other process design alternatives leads to a lower contribution to the potential environmental impacts (PEI’s). The acid-catalyzed process generally shows the highest PEI’s, in particular due to the high energy requirements associated with methanol recovery operations.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Química
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
Resumo:
CYCLOTech is a high-tech Project, related with an innovative method for direct production of a radioactive pharmaceutical, used in excess of 85% of 35 Million Nuclear Medicine procedures done yearly, worldwide, representing globally more than 3 Billion Euros. The CYCLOTech team has developed an innovative proprietary methodology based on the use of Cyclotron Centers, formally identified as the Clients (actually, there are around 450 of this Centers in function worldwide), to directly produce and deliver the radiopharmaceutical to the final users, at the Hospitals and other Health Institutions (estimating at around 25.000, worldwide). The investment still need to finish Research and Technological Development (RTD), Industrial, Regulatory and Intellectual Property Rights (IPR) issues and allow the introduction in the Market is 4,35 M€, with a Payback of 3 years, with an Investment Return Rate (IRR) of 81,7% and a Net Present Value (NPV) of 60.620.525€ (in 2020).
Resumo:
The interest in zero-valent iron nanoparticles has been increasing significantly since the development of a green production method in which extracts from natural products or wastes are used. However, this field of application is yet poorly studied and lacks knowledge that allows the full understanding of the production and application processes. The aim of the present work was to evaluate the viability of the utilization of several tree leaves to produce extracts which are capable of reducing iron(III) in aqueous solution to form nZVIs. The quality of the extracts was evaluated concerning their antioxidant capacity. The results show that: i) dried leaves produce extracts with higher antioxidant capacities than non-dried leaves, ii) the most favorable extraction conditions (temperature, contact time, and volume:mass ratio) were identified for each leaf, iii) with the aim of developing a green, but also low-cost,method waterwas chosen as solvent, iv) the extracts can be classified in three categories according to their antioxidant capacity (expressed as Fe(II) concentration): >40 mmol L−1; 20–40 mmol L−1; and 2–10 mmol L−1; with oak, pomegranate and green tea leaves producing the richest extracts, and v) TEManalysis proves that nZVIs (d=10–20 nm) can be produced using the tree leaf extracts.
Resumo:
Fungi on crops produce mycotoxins in the field, during handling, and in storage. Exposure of animals and humans are usually through consumption of contaminated feedstuffs or foods. Molds can grow and mycotoxins can be produced either pre-harvest or post-harvest, during storage, transport, processing, or feeding. Worldwide, approximately 25% of crops are affected by mycotoxins annually. Because of this is possible to concluded that mycotoxins occur frequently in a variety of feedstuffs that are given to animals causing several effects: subclinical losses in performance, increases the incidence of disease and reduced reproductive performance. Aim of study: A study was developed intending to know environmental fungal contamination in a Portuguese feed production unit. Corn, wheat and soybeans were the most common cereals used in the feed production.
Resumo:
The most common scenario in occupational settings is the co-exposure to several risk factors. This aspect has to be considered in the risk assessment process because can alter the toxicity and the health effects when dealing with a co-exposure to two or more chemical agents. A study was developed aiming to elucidate if there is occupational co-exposure to aflatoxin B1 (AFB1) and ochratoxin (OTA) in Portuguese swine production. To assess occupational exposure to both mycotoxins, a biomarker of internal dose was used. The same blood samples from workers of seven swine farms and controls were consider to measure AFB1 and OTA. Twenty one workers (75%) showed detectable levels of AFB1 with values ranging from <1 ng/ml to 8.94 ng/ml and with significantly higher concentration when compared with controls. In the case of OTA, there wasn't found a statistical difference between workers and controls and the values for workers group ranged from 0.34 ng/ml to 3.12 ng/ml and 1.76 ng/ml to 3.42 ng/ml for control group. The results suggest that occupational exposure to AFB1 occurs. However, in the case of OTA results, seems that food consumption plays an important role in both groups exposure. The results claim attention for the possible implications on health of this co-exposure.
Resumo:
When timber elements in heritage buildings are moderately degraded by fungi and assuming underlying moisture problems have been solved, two actions can be taken: i) use a biocide to stop fungal activity; ii) consolidate the degraded elements so that the timber keeps on fulfilling its structural and decorative functions. The aim of this work is to investigate the mechanical performance of maritime pine wood degraded by fungi after being treated with a biocide followed by impregnation with a polymer product. Three commercially available products were used: a boron water-based biocide, an acrylic consolidant and an epoxy-based consolidant. Treated and consolidated specimens were subjected to mechanical tests: axial compression test (NP 618), static surface hardness (ISO 3350) and bending test (NP 619). Sets of replicates were subjected to an evaporation ageing test (EN 73) after application of the products and also tested for mechanical behaviour. An increase in mechanical strength was observed for both consolidants with no significant influence from the previous use of biocide product. The specimens subjected to ageing showed a slightly better general mechanical performance.
Resumo:
An experimental and Finite Element study was performed on the bending behaviour of wood beams of the Pinus Pinaster species repaired with adhesively-bonded carbon–epoxy patches, after sustaining damage by cross-grain failure. This damage is characterized by crack growth at a small angle to the beams longitudinal axis, due to misalignment between the wood fibres and the beam axis. Cross-grain failure can occur in large-scale in a wood member when trees that have grown spirally or with a pronounced taper are cut for lumber. Three patch lengths were tested. The simulations include the possibility of cohesive fracture of the adhesive layer, failure within the wood beam in two propagation planes and patch interlaminar failure, by the use of cohesive zone modelling. The respective cohesive properties were estimated either by an inverse method or from the literature. The comparison with the tests allowed the validation of the proposed methodology, opening a good perspective for the reduction of costs in the design stages of these repairs due to extensive experimentation.