958 resultados para water-soluble porphyrins
Resumo:
This paper proposes ail alternative configuration to conventional reverse osmosis (RO) desalination systems by incorporating the use of gravitational potential energy. The proposal suggests a model that can be viewed as the energy station of a RO desalination plant. Conventionally, RO plants use a high-pressure pump, powered by electricity or fossil fuel. The function of the pump is to send a flux of saline water to a group of semi-permeable membrane modules, capable of ""filtering"" the dissolved salts. In this proposed model, we intend to achieve a flux at the inlet of the membrane modules with a pressure high enough for the desalination process, without using, either electricity or fossil fuels. To do this we divised a hybrid system that uses both gravitational potential energy and wind energy. The technical viability of the alternative was theoretically proven by deductions based on physics and mathematics.
Resumo:
This article presents a tool for the allocation analysis of complex systems of water resources, called AcquaNetXL, developed in the form of spreadsheet in which a model of linear optimization and another nonlinear were incorporated. The AcquaNetXL keeps the concepts and attributes of a decision support system. In other words, it straightens out the communication between the user and the computer, facilitates the understanding and the formulation of the problem, the interpretation of the results and it also gives a support in the process of decision making, turning it into a clear and organized process. The performance of the algorithms used for solving the problems of water allocation was satisfactory especially for the linear model.
Resumo:
As many countries are moving toward water sector reforms, practical issues of how water management institutions can better effect allocation, regulation, and enforcement of water rights have emerged. The problem of nonavailability of water to tailenders on an irrigation system in developing countries, due to unlicensed upstream diversions is well documented. The reliability of access or equivalently the uncertainty associated with water availability at their diversion point becomes a parameter that is likely to influence the application by users for water licenses, as well as their willingness to pay for licensed use. The ability of a water agency to reduce this uncertainty through effective water rights enforcement is related to the fiscal ability of the agency to monitor and enforce licensed use. In this paper, this interplay across the users and the agency is explored, considering the hydraulic structure or sequence of water use and parameters that define the users and the agency`s economics. The potential for free rider behavior by the users, as well as their proposals for licensed use are derived conditional on this setting. The analyses presented are developed in the framework of the theory of ""Law and Economics,`` with user interactions modeled as a game theoretic enterprise. The state of Ceara, Brazil, is used loosely as an example setting, with parameter values for the experiments indexed to be approximately those relevant for current decisions. The potential for using the ideas in participatory decision making is discussed. This paper is an initial attempt to develop a conceptual framework for analyzing such situations but with a focus on the reservoir-canal system water rights enforcement.
Resumo:
This paper describes the development of an optimization model for the management and operation of a large-scale, multireservoir water supply distribution system with preemptive priorities. The model considers multiobjectives and hedging rules. During periods of drought, when water supply is insufficient to meet the planned demand, appropriate rationing factors are applied to reduce water supply. In this paper, a water distribution system is formulated as a network and solved by the GAMS modeling system for mathematical programming and optimization. A user-friendly interface is developed to facilitate the manipulation of data and to generate graphs and tables for decision makers. The optimization model and its interface form a decision support system (DSS), which can be used to configure a water distribution system to facilitate capacity expansion and reliability studies. Several examples are presented to demonstrate the utility and versatility of the developed DSS under different supply and demand scenarios, including applications to one of the largest water supply systems in the world, the Sao Paulo Metropolitan Area Water Supply Distribution System in Brazil.
Resumo:
A mathematical model, numerical simulations and stability and flow regime maps corresponding to severe slugging in pipeline riser systems, are presented. In the simulations air and water were used as flowing fluids. The mathematical model considers continuity equations for liquid and gas phases, with a simplified momentum equation for the mixture, neglecting inertia. A drift-flux model, evaluated for the local conditions in the riser, is used as a closure law. The developed model predicts the location of the liquid accumulation front in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The numerical procedure is convergent for different nodalizations. A comparison is made with experimental results corresponding to a catenary riser, showing very good results for slugging cycle and stability and flow regime maps. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010
Resumo:
In this study, the concept of cellular automata is applied in an innovative way to simulate the separation of phases in a water/oil emulsion. The velocity of the water droplets is calculated by the balance of forces acting on a pair of droplets in a group, and cellular automata is used to simulate the whole group of droplets. Thus, it is possible to solve the problem stochastically and to show the sequence of collisions of droplets and coalescence phenomena. This methodology enables the calculation of the amount of water that can be separated from the emulsion under different operating conditions, thus enabling the process to be optimized. Comparisons between the results obtained from the developed model and the operational performance of an actual desalting unit are carried out. The accuracy observed shows that the developed model is a good representation of the actual process. (C) 2010 Published by Elsevier Ltd.
Resumo:
In petroleum refineries, water is used in desalting units to remove the salt contained in crude oil. Typically, 7% of the volume of hot crude oil is water, forming a water-and-oil emulsion. The emulsion flows between two electrodes and is subjected to an electric field. The electrical forces promote the coalescence of small droplets of water dispersed in crude oil, and these form bigger droplets. This paper calculates the forces acting on the droplets, highlighting particularly the mechanisms proposed for droplet-droplet coalescence under the influence of an applied electric field. Moreover, a model is developed in order to calculate the displacement speed of the droplets and the time between droplet collisions. Thus, it is possible to simulate and optimize the process by changing the operational variables (temperature, electrical field, and water quantity). The main advantage of this study is to show that it is feasible to increase the volume of water recycled in desalting processes, thus reducing the use of freshwater and the generation of liquid effluents in refineries.
Resumo:
The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult`s law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.
Resumo:
P>Coconut water is an isotonic beverage naturally obtained from the green coconut. After extracted and exposed to air, it is rapidly degraded by enzymes peroxidase (POD) and polyphenoloxidase (PPO). To study the effect of thermal processing on coconut water enzymatic activity, batch process was conducted at three different temperatures, and at eight holding times. The residual activity values suggest the presence of two isoenzymes with different thermal resistances, at least, and a two-component first-order model was considered to model the enzymatic inactivation parameters. The decimal reduction time at 86.9 degrees C (D(86.9 degrees C)) determined were 6.0 s and 11.3 min for PPO heat labile and heat resistant fractions, respectively, with average z-value = 5.6 degrees C (temperature difference required for tenfold change in D). For POD, D(86.9 degrees C) = 8.6 s (z = 3.4 degrees C) for the heat labile fraction was obtained and D(86.9 degrees C) = 26.3 min (z = 6.7 degrees C) for the heat resistant one.
Resumo:
Cooling towers are widely used in many industrial and utility plants as a cooling medium, whose thermal performance is of vital importance. Despite the wide interest in cooling tower design, rating and its importance in energy conservation, there are few investigations concerning the integrated analysis of cooling systems. This work presents an approach for the systemic performance analysis of a cooling water system. The approach combines experimental design with mathematical modeling. An experimental investigation was carried out to characterize the mass transfer in the packing of the cooling tower as a function of the liquid and gas flow rates, whose results were within the range of the measurement accuracy. Then, an integrated model was developed that relies on the mass and heat transfer of the cooling tower, as well as on the hydraulic and thermal interactions with a heat exchanger network. The integrated model for the cooling water system was simulated and the temperature results agree with the experimental data of the real operation of the pilot plant. A case study illustrates the interaction in the system and the need for a systemic analysis of cooling water system. The proposed mathematical and experimental analysis should be useful for performance analysis of real-world cooling water systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Oxidation processes are used in wastewater treatment when conventional processes are not effective due to the presence of recalcitrant organic contaminants, like phenol. However, the presence of ionic compounds associated with organic pollutants may retard the oxidation. In this work the transport of species contained in an aqueous solution of phenol containing sodium chloride was evaluated in an electrodialysis (ED) system. An experimental study was carried out in which the influence of the process variables on the phenol loss and sodium chloride removal was investigated. Experiments were also performed without current, in order to determine the phenol transfer due to diffusion. The phenol and salt concentration variations in the ED compartments were measured over time, using dedicated procedures and an experimental design to determine the global characteristic parameters. A phenomenological approach was used to relate the phenol, salt and water fluxes with the driving forces (concentration and electric potential gradients). Under ED conditions, two contributions were pointed out for the phenol transport, i.e. diffusion and convection, this latter coming from the water flux due to electroosmosis related to the migration of salts. The fitting of the parameters of the transport equations resulted in good agreement with the experimental results over the range of conditions investigated. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The solar driven photo-Fenton process for treating water containing phenol as a contaminant has been evaluated by means of pilot-scale experiments with a parabolic trough solar reactor (PTR). The effects of Fe(II) (0.04-1.0 mmol L(-1)), H(2)O(2) (7-270 mmol L(-1)), initial phenol concentration (100 and 500 mg C L(-1)), solar radiation, and operation mode (batch and fed-batch) on the process efficiency were investigated. More than 90% of the dissolved organic carbon (DOC) was removed within 3 hours of irradiation or less, a performance equivalent to that of artificially-irradiated reactors, indicating that solar light can be used either as an effective complementary or as an alternative source of photons for the photo-Fenton degradation process. A non-linear multivariable model based on a neural network was fit to the experimental results of batch-mode experiments in order to evaluate the relative importance of the process variables considered on the DOC removal over the reaction time. This included solar radiation, which is not a controlled variable. The observed behavior of the system in batch-mode was compared with fed-batch experiments carried out under similar conditions. The main contribution of the study consists of the results from experiments under different conditions and the discussion of the system behavior. Both constitute important information for the design and scale-up of solar radiation-based photodegradation processes.
Resumo:
This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.
Resumo:
Experimental results for the activity of water in aqueous solutions of 10 single, synthetic polyelectrolytes (polysodium acrylate, polysodium methacrylate, polyammonium acrylate, polysodium ethylene sulfonate, and polysodium styrene sulfonate) and sodium chloride at 298.2 K are presented. The experimental work was performed by applying the isopiestic method with sodium chloride as a reference substance. As expected, the activity of water decreases when the concentration of a polyelectrolyte and/or sodium chloride increases. At constant concentration of a polyelectrolyte and sodium chloride, the activity of water depends on the monomer unit and the molecular mass of the polyelectrolyte. The new data are to be used in future work to develop and test models for the Gibbs excess energy of aqueous solutions of polyelectrolytes.