945 resultados para vertical-cavity surface-emitting lasers (VCSELs)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine snow (MS) distribution from the surface to 1000 m depth was determined in the equatorial Pacific using the underwater video profiler during the Etude du Broutage en Zone Equatoriale cruise in fall 1996. The latitudinal transect was carried out at 17 stations along the 180° meridian from 8°S to 8°N during a cold phase of El Niño-Southern Oscillation. Higher MS concentrations were found below the equatorial zone than poleward. At the equator the estimated integrated MS carbon/m**2 in the upper kilometer was 5.7 g/m**2, while both southward and northward (between 1° and 8°) the mean integrated MS carbon was about 2.7 g/m**2. In the upper 50 m the MS carbon was twofold lower than the combined carbon of autotrophic and heterotrophic protists and four times lower than the mesozooplankton carbon biomass, both measured concurrently during the cruise. Different water bodies had different MS content. The highest concentrations were found in the South Equatorial Current, the South Equatorial Counter Current, and the North Equatorial Countercurrent. Tropical waters at the south in the South Subsurface Countercurrents and the warm northern superficial waters had the lowest MS biomass. Mechanistically, a latitudinal "conveyor belt", a poleward divergence of upwelled waters that return to the equator after being downwelled at north and south convergent zones, may partially explain the vertical distribution of particulate matter observed during the studied period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotope values from calcareous nannofossils in four cores spanning the Quaternary from DSDP Site 593 in Tasman Sea are compared with the delta18O signal of planktonic and benthic foraminifers from the same samples. The classic mid-late Quaternary isotope stages are exhibited with stage 12 particularly well developed. When delta18O values of nannofossils are adjusted for coccolithophore vital effects they indicate larger (by 1-6°C) surface to bottom paleotemperature gradients and greater (by 1-3°C) changes in mean sea-surface temperature between full glacial and interglacial conditions than do delta18O values from planktonic foraminifers. Along with the foraminifers, the nannofossils record a bimodal distribution of delta18O between the early and mid-late Quaternary, indicating a significant change in global ice budget. The delta13C of nannofossils also shows a bimodal distribution, but is opposite to that for the foraminifers. Nannofossil delta18O values record a shift of c. -0.8? at isotope stage 8 corresponding to a major reduction in abundance of the previously dominant gephyrocapsids. A shift in delta13C of c. -1.5? also occurs at stage 8, and a shift in delta13C of c. +1.2? at around stage 14. The delta18O shift in nannofossils is at least a Pacific-wide phenomenon; the delta13C shifts are possibly global. The delta13C signal of nannofossils exhibits an antipathetic relationship to that of benthic foraminifers back to isotope stage 18 but no significant correlation beyond this level to the base of the Quaternary. This is interpreted as reflecting local productivity dominating global influences on delta13C since stage 18 at DSDP Site 593. The difference between nannofossil and benthic foraminifer delta13C signals (Delta13C) tends to be maximum during glacial stages and minimum during interglacials throughout the section, showing a strong correlation with the nannofossil delta180 signal. The increased partitioning of 13C between surface and bottom waters during the glacial periods may indicate heightened productivity in surface waters in the southern Tasman Sea at these times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abundance of microzooplankton was studied from August to October 1970 in a ship laboratory using the method of concentration of water samples by filtration and then counting living organisms under a microscope. The main groups (in order of decreasing abundance) were as follows: infusorians, nauplii, copepodids, radiolarians, appendicularians, and some others (rotifers, worm and mollusk larvae). Concentration of infusorians rarely exceeded 100 #/l, possibly an underestimate. Nauplii often numbered 20 to 30 #/l. Study of vertical distribution of microzooplankton showed that peak concentrations in the Mediterranean Sea were at depth of 20-30 m regardless of day time. There were 2 peaks in the Atlantic Ocean, one in the 10- to 20-m layer, the other in the 50- to 75-m layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During a four weeks anchoring station of R.V. ,,Meteor" on the equator at 30° W longitude, vertical profiles of wind, temperature, and humidity were measured by means of a meteorological buoy carrying a mast of 10 m height. After eliminating periods of instrumental failure, 18 days are available for the investigation of the diurnal variations of the meteorological parameters and 9 days for the investigation of the vertical heat fluxes. The diurnal variations of the above mentioned quantities are caused essentially by two periodic processes: the 24-hourly changing solar energy supply and the 12-hourly oscillation of air pressure, which both originate in the daily rotation of the earth. While the temperature of the water and of the near water layers of the air show a 24 hours period in their diurnal course, the wind speed, as a consequence of the pressure wave, has a 12 hours period, which is also observable in evaporation and, consequently, in the water vapor content of the surface layer. Concerning the temperature, a weak dependence of the daily amplitude on height was determined. Further investigation of the profiles yields relations between the vertical gradients of wind, temperature, and water vapor and the wind speed, the difference between sea and air of temperature and water vapor, respectively, thus giving a contribution to the problem of parameterizing the vertical fluxes. Mean profile coefficients for the encountered stabilities, which were slightly unstable, are presented, and correction terms are given due to the fact that the conditions at the very surface are not sufficiently represented by measuring in a water depth of 20 cm and assuming water vapor saturation. This is especially true for the water vapor content, where the relation between the gradient and the air-sea difference suggests a reduction of relative humidity to appr. 96% at the very surface, if the gradients are high. This effect may result in an overestimation of the water vapor flux, if a ,,bulk"-formula is used. Finally sensible and latent heat fluxes are computed by means of a gradient-formula. The influence of stability on the transfer process is taken into account. As the air-sea temperature differences are small, sensible heat plays no important role in that region, but latent heat shows several interesting features. Within the measuring period of 18 days, a regular variation by a factor of ten is observed. Unperiodic short term variations are superposed by periodic diurnal variations. The mean diurnal course shows a 12-hours period caused by the vertical wind speed gradient superposed by a 24-hours period due to the changing stabilities. Mean values within the measuring period are 276 ly/day for latent heat and 9.41y/day for sensible heat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface sediments from the South American continental margin surrounding tbe Argentine Basin were studied with respect to bulk geochemistry (Caeo) and C ) and grain-size composition (sand/silt/clay relation and terrigenous silt grain-size distribution). The grain-size distributions of the terrigenous silt fraction were unmixed into three end members (EMs), using an end-member modelling algorithm. Three unimodal EMs appear to satisfactorily explain the variations in the data set of the grain-size distributions ofterrigenous silt. The EMs are related to sediment supply by rivers, downslope transport, winnowing, dispersal and re-deposition by currents. The bulk geochemical composition was used to trace the distribution of prominent water masses within the vertical profile. The sediments of the eastern South American continental margin are generally divided into a coarse-grained and carbonate-depleted southwestern part, and a finer-grained and carbonate-rich northeastern part. The transition of both environments is located at the position of the Brazil Malvinas Confluence (BMC). The sediments below the confluence mixing zone of the Malvinas and Brazil Currents and its extensions are characterised by high concentrations of organic carbon, low carbonate contents and high proportions of the intennediate grain-size end member. Tracing these properties, the BMC emerges as a distinct north-south striking feature centered at 52-54°W crossing the continental margin diagonally. Adjacent to this prominent feature in the southwest, the direct detrital sediment discharge of the Rio de la Plata is clearly recognised by a downslope tongue of sand and high proportions of the coarsest EM. A similar coarse grain-size composition extends further south along the continental slope. However, it displays bener sorting due to intense winnowing by the vigorous Malvinas Current. Fine-grained sedimentary deposition zones are located at the southwestern deeper part of the Rio Grande Rise and the southern abyssal Brazil Basin, both within the AABW domain. Less conspicuous winnowing/accumulation panerns are indicated north of the La Plata within the NADW level according to the continental margin topography. We demonstrate that combined bulk geochemical and grain-size properties of surface sediments, unmixed with an end-member algorithm, provide a powerful tool to reconstruct the complex interplay of sedimentology and oceanography along a time slice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between mesoscale hydrodynamics and the distribution of large particulate matter (LPM, particles larger than 200 ?m) in the first 1000 m of the Western Mediterranean basin was studied with a microprocessor-driven CTD-video package, the Underwater Video Profiler (UVP). Observations made during the last decade showed that, in late spring and summer, LPM concentration was high in the coastal part of the Western Mediterranean basin at the shelf break and near the continental slope (computed maximum: 149 ?g C/l between 0 and 100 m near the Spanish coast of the Gibraltar Strait). LPM concentration decreased further offshore into the central Mediterranean Sea where, below 100 m, it remained uniformly low, ranging from 2 to 4 ?g C/l. However, a strong variability was observed in the different mesoscale structures such as the Almeria-Oran jet in the Alboran Sea or the Algerian eddies. LPM concentration was up to one order of magnitude higher in fronts and eddies than in the adjacent oligotrophic Mediterranean waters (i.e. 35 vs. 8 ?g C/l in the Alboran Sea or 16 vs. 3 ?g C/l in a small shear cyclonic eddy). Our observations suggest that LPM spatial heterogeneity generated by the upper layer mesoscale hydrodynamics extends into deeper layers. Consequently, the superficial mesoscale dynamics may significantly contribute to the biogeochemical cycling between the upper and meso-pelagic layers.