966 resultados para vascular endonthelial growth factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance is a feature of many common disorders including obesity and type 2 diabetes mellitus. In these disorders, the β-cells compensate for the insulin resistance for long periods of time with an increase in secretory capacity, an increase in β-cell mass, or both. To determine whether the β-cell response might relate to a circulating growth factor, we have transplanted normal islets under the kidney capsule of normoglycemic insulin-resistant mice with two different models of insulin resistance: lean mice that have a double heterozygous deletion of the insulin receptor and insulin receptor substrate-1 (DH) or the obese, hyperglycemic ob/ob mice. In the grafts transplanted into both hosts, there was a marked increase in β-cell mitotic activity and islet mass that was comparable with that observed in the endogenous pancreas. By contrast, islets of the DH mouse transplanted into normal mice showed reduced mitotic index. These data suggest the insulin resistance is associated with a circulating islet cell growth factor that is independent of glucose and obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ligand activation of the epidermal growth factor receptor (EGFR) leads to its rapid internalization and eventual delivery to lysosomes. This process is thought to be a mechanism to attenuate signaling, but signals could potentially be generated after endocytosis. To directly evaluate EGFR signaling during receptor trafficking, we developed a technique to rapidly and selectively isolate internalized EGFR and associated molecules with the use of reversibly biotinylated anti-EGFR antibodies. In addition, we developed antibodies specific to tyrosine-phosphorylated EGFR. With the use of a combination of fluorescence imaging and affinity precipitation approaches, we evaluated the state of EGFR activation and substrate association during trafficking in epithelial cells. We found that after internalization, EGFR remained active in the early endosomes. However, receptors were inactivated before degradation, apparently due to ligand removal from endosomes. Adapter molecules, such as Shc, were associated with EGFR both at the cell surface and within endosomes. Some molecules, such as Grb2, were primarily found associated with surface EGFR, whereas others, such as Eps8, were found only with intracellular receptors. During the inactivation phase, c-Cbl became EGFR associated, consistent with its postulated role in receptor attenuation. We conclude that the association of the EGFR with different proteins is compartment specific. In addition, ligand loss is the proximal cause of EGFR inactivation. Thus, regulated trafficking could potentially influence the pattern as well as the duration of signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rat fibroblast mutant defective in oncogenic transformation and signaling from epidermal growth factor receptor to Ras has been isolated. The mutant contains dominant negative-type point mutations in the C-terminal SH3 domain of one crkII gene. Among the adapters tested, the mutant is complemented only by crkII cDNA. Expression of the mutated crkII in parent cells generates the phenotype indistinguishable from the mutant cell. Yet overexpression or reduced expression of Grb2 in the mutant before and after complementation with crkII have little effect on its phenotype. We conclude that adapter molecules are highly specific and that the oncogenic growth signal from epidermal growth factor receptor to Ras is predominantly mediated by CrkII in rat fibroblast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past studies have shown that epidermal growth factor (EGF) is able to mimic the uterotropic effects of estrogen in the rodent. These studies have suggested a "cross-talk" model in which EGF receptor (EGF-R) signaling results in activation of nuclear estrogen receptor (ER) and its target genes in an estrogen-independent manner. Furthermore, in vitro studies have indicated the requirement for ER in this mechanism. To verify the requirement for ER in an in vivo system, EGF effects were studied in the uteri of ER knockout (ERKO) mice, which lack functional ER. The EGF-R levels, autophosphorylation, and c-fos induction were observed at equivalent levels in both genotypes indicating that removal of ER did not disrupt the EGF responses. Induction of DNA synthesis and the progesterone receptor gene in the uterus were measured after EGF treatment of both ERKO and wild-type animals. Wild-type mice showed increases of 4.3-fold in DNA synthesis, as well as an increase in PR mRNA after EGF treatment. However, these responses were absent in ERKO mice, confirming that the estrogen-like effects of EGF in the mouse uterus do indeed require the ER. These data conclusively demonstrate the coupling of EGF and ER signaling pathways in the rodent reproductive tract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test the hypothesis that the nonrandom organization of the contents of interphase nuclei represents a compartmentalization of function, we examined the relative, spatial relationship of small nuclear ribonucleoproteins (snRNPs) and of DNase I hypersensitive chromatin (DHC) in rat pheochromocytoma cells. In controls, DHC and snRNPs colocalized as pan-nuclear speckles. During nerve growth factor-induced differentiation, both snRNPs and DHC migrated to the nuclear periphery with the migration of DHC preceding that of snRNPs, resulting in their transient separation. The formation of DHC shells temporally coincided with an up-regulation of neurofilament light chain mRNA. This indicates that the expression of this sequence may be associated with its spatial transposition to the nuclear periphery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signaling pathways associated with estrogen-induced proliferation of epithelial cells in the reproductive tract have not been defined. To identify receptor tyrosine kinases that are activated in vivo by 17 beta-estradiol (E2), uteri from ovariectomized mice were examined for enhanced tyrosine phosphorylation of various receptors and a receptor substrate following treatment with this hormone. Within 4 hr after hormone exposure, extracts showed increased phosphotyrosine (P-Tyr) immunoreactivity at several bands, including 170- and 180-kDa; these bands were still apparent at 24 hr after E2. Analysis of immunoprecipitates from uterine extracts revealed that E2 enhanced tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor substrate-1 (IRS-1) by 6 hr. Comparison of supernatants from IRS-1 and control rabbit IgG immunoprecipitates indicated that the 170-kDa P-Tyr band in extracts was equivalent to IRS-1. The receptors for epidermal growth factor, platelet-derived growth factor, and basic fibroblast growth factor did not exhibit an E2-induced increase in P-Tyr content. The nonestrogenic steroid hormones examined did not stimulate the P-Tyr content of IGF-1R or IRS-1. Immunolocalization of P-Tyr and IRS-1 revealed strong reactivity in the epithelial layer of the uterus from E2-treated mice, suggesting that the majority of P-Tyr bands observed in immunoblots originate in the epithelium. Since hormonal activation of IRS-1 is epithelial, estrogen-specific, and initiated before maximal DNA synthesis occurs following treatment with hormone, this protein, as part of the IGF-1R pathway, may be important in mediating estrogen-stimulated proliferation in the uterus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteases are known to play important roles in cell growth control, although the underlying mechanisms are still poorly understood. Here we show that the protease inhibitor N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal induced cell cycle arrest in platelet-derived growth factor-stimulated human fibroblasts at the G1/S boundary of the cell cycle by inhibiting the proteasome. Inhibition of the proteasome resulted in accumulation of the tumor suppressor p53, which was followed by an increase in the amount of the cyclin-dependent kinase-inhibitor p21. As a consequence, both phosphorylation and activity of the cyclin-dependent kinase 2/cyclin E complex were inhibited. We further observed that the retinoblastoma gene product, pRb, remained in the hypophosphorylated state, thus preventing cells from progression into the S-phase. These studies strongly support the hypothesis that the proteasome is a key regulator in the G1-phase of cell cycle progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nerve growth factor (NGF) serum levels were measured in 49 patients with asthma and/or rhinoconjunctivitis and/or urticaria-angioedema. Clinical and biochemical parameters, such as bronchial reactivity, total and specific serum IgE levels, and circulating eosinophil cationic protein levels, were evaluated in relation to NGF values in asthma patients. NGF was significantly increased in the 42 allergic (skin-test- or radioallergosorbent-test-positive) subjects (49.7 +/- 28.8 pg/ml) versus the 18 matched controls (3.8 +/- 1.7 pg/ml; P < 0.001). NGF levels in allergic patients with asthma, rhinoconjunctivitis, and urticaria-angioedema were 132.1 +/- 90.8, 17.6 +/- 6.1, and 7.6 +/- 1.8 pg/ml (P < 0.001, P < 0.002, and P < 0.05 versus controls), respectively. Patients with more than one allergic disease had higher NGF serum values than those with a single disease. When asthma patients were considered as a group, NGF serum values (87.6 +/- 59.8 pg/ml) were still significantly higher than those of control groups (P < 0.001), but allergic asthma patients had elevated NGF serum levels compared with nonallergic asthma patients (132.1 +/- 90.8 versus 4.9 +/- 2.9 pg/ml; P < 0.001). NGF serum levels correlate to total IgE serum values (rho = 0.43; P < 0.02). The highest NGF values were found in patients with severe allergic asthma, a high degree of bronchial hyperreactivity, and high total IgE and eosinophil cationic protein serum levels. This study represents the first observation (that we know of) that NGF is increased in human allergic inflammatory diseases and asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disulfide bonding pattern of the fourth and fifth epidermal growth factor (EGF)-like domains within the smallest active fragment of thrombomodulin have been determined. In previous work, this fragment was expressed and purified to homogeneity, and its cofactor activity, as measured by Kcat for thrombin activation of protein C, was the same as that for full-length thrombomodulin. CNBr cleavage at the single methionine in the connecting region between the domains and subsequent deglycosylation yielded the individual EGF-like domains. The disulfide bonds were mapped by partial reduction with tris(2-carboxyethyl)phosphine according to the method of Gray [Gray, W. R. (1993) Protein Sci. 2, 1732-1748], which provides unambiguous results. The disulfide bonding pattern of the fourth EGF-like domain was (1-3, 2-4, 5-6), which is the same as that found previously in EGF and in a synthetic version of the fourth EGF-like domain. Surprisingly, the disulfide bonding pattern of the fifth domain was (1-2, 3-4, 5-6), which is unlike that found in EGF or in any other EGF-like domain analyzed so far. This result is in line with an earlier observation that the (1-2, 3-4, 5-6) isomer bound to thrombin more tightly than the EGF-like (1-3, 2-4, 5-6) isomer. The observation that not all EGF-like domains have an EGF-like disulfide bonding pattern reveals an additional element of diversity in the structure of EGF-like domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initiation and morphogenesis of cutaneous appendages depend on a series of reciprocal signaling events between the epithelium and mesenchyme of the embryonic skin. In the development of feather germs, early dermal signals induce the formation of epidermal placodes that in turn signal the mesoderm to form dermal condensations immediately beneath them. We find a spatially and temporally restricted pattern of transcription for the genes that encode fibroblast growth factor (FGF) 2 and FGF receptor (FGFR) 1 in developing feather germs of the chicken embryo. FGF-2 expression is restricted to the epidermal placodes, whereas FGFR-1 expression is limited to the dermal condensations. Transcription of these genes could not be detected in skins of scaleless (sc/sc) embryos that fail to develop feathers as a result of an ectodermal defect. Treatment of sc/sc skins with FGF-2 results in the formation of feathers at the site of application of the growth factor and the induced feathers express FGFR-1 in their dermal condensations. Thus, we have established FGF-2 as an epidermal signal in early feather germ formation. The observation that FGF-2 can rescue the mutant phenotype of sc/sc embryos suggests that FGF-2 either is, or is downstream from, the signal that the sc/sc mutant ectoderm fails to generate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the c-myc oncogene is associated with a variety of both human and experimental tumors, and cooperation of other oncogenes and growth factors with the myc family are critical in the evolution of the malignant phenotype. The interaction of hepatocyte growth factor (HGF) with c-myc during hepatocarcinogenesis in a transgenic mouse model has been analyzed. While sustained overexpression of c-myc in the liver leads to cancer, coexpression of HGF and c-myc in the liver delayed the appearance of preneoplastic lesions and prevented malignant conversion. Furthermore, tumor promotion by phenobarbital was completely inhibited in the c-myc/HGF double transgenic mice, whereas phenobarbital was an effective tumor promoter in the c-myc single transgenic mice. The results indicate that HGF may function as a tumor suppressor during early stages of liver carcinogenesis, and suggest the possibility of therapeutic application for this cytokine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormal mesoderm movement, leading to defects in axial organization, is observed in mouse and Xenopus laevis embryos deprived of platelet-derived growth factor (PDGF) AA signaling. However, neither the cellular response to PDGF nor the signaling pathways involved are understood. Herein we describe an in vitro assay to examine the direct effect of PDGF AA on aggregates of Xenopus embryonic mesoderm cells. We find that PDGF AA stimulates aggregates to spread on fibronectin. This behavior is similar to that of migrating mesoderm cells in vivo that spread and form lamellipodia and filipodia on contact with fibronectin-rich extracellular matrix. We go on to show two lines of evidence that implicate phosphatidylinositol 3-kinase (PI3K) as an important component of PDGF-induced mesoderm cell spreading. (i) The fungal metabolite wortmannin, which inhibits signaling by PI3K, blocks mesoderm spreading in response to PDGF AA. (ii) Activation of a series of receptors with specific tyrosine-to-phenylalanine mutations revealed PDGF-induced spreading of mesoderm cells depends on PI3K but not on other signaling molecules that interact with PDGF receptors including phospholipase C gamma, Ras GTPase-activating protein, and phosphotyrosine phosphatase SHPTP2. These results indicate that a PDGF signal, medicated by PI3K, can facilitate embryonic mesoderm cell spreading on fibronectin. We propose that PDGF, produced by the ectoderm, influences the adhesive properties of the adjacent mesoderm cells during gastrulation.