901 resultados para user requirement
Resumo:
SFTI-1 is a small cyclic peptide from sunflower seeds that is one of the most potent trypsin inhibitors of any naturally occurring peptide and is related to the Bowman-Birk family of inhibitors (BBIs). BBIs are involved in the defense mechanisms of plants and also have potential as cancer chemopreventive agents. At only 14 amino acids in size, SFTI-1 is thought to be a highly optimized scaffold of the BBI active site region, and thus it is of interest to examine its important structural and functional features. In this study, a suite of 12 alanine mutants of SFTI-1 has been synthesized, and their structures and activities have been determined. SFTI-1 incorporates a binding loop that is clasped together with a disulfide bond and a secondary peptide loop making up the circular backbone. We show here that the secondary loop stabilizes the binding loop to the consequences of sequence variations. In particular, full-length BBIs have a conserved cis-proline that has been shown previously to be required for well defined structure and potent activity, but we show here that the SFTI-1 scaffold can accommodate mutation of this residue and still have a well defined native-like conformation and nanomolar activity in inhibiting trypsin. Among the Ala mutants, the most significant structural perturbation occurred when Asp(14) was mutated, and it appears that this residue is important in stabilizing the trans peptide bond preceding Pro(13) and is thus a key residue in maintaining the highly constrained structure of SFTI-1. This aspartic acid residue is thought to be involved in the cyclization mechanism associated with excision of SFTI-1 from its 58-amino acid precursor. Overall, this mutational analysis of SFTI-1 clearly defines the optimized nature of the SFTI-1 scaffold and demonstrates the importance of the secondary loop in maintaining the active conformation of the binding loop.
Resumo:
User requirements of multimedia authentication are various. In some cases, the user requires an authentication system to monitor a set of specific areas with respective sensitivity while neglecting other modification. Most current existing fragile watermarking schemes are mixed systems, which can not satisfy accurate user requirements. Therefore, in this paper we designed a sensor-based multimedia authentication architecture. This system consists of sensor combinations and a fuzzy response logic system. A sensor is designed to strictly respond to given area tampering of a certain type. With this scheme, any complicated authentication requirement can be satisfied, and many problems such as error tolerant tamper method detection will be easily resolved. We also provided experiments to demonstrate the implementation of the sensor-based system
Resumo:
There has been an increased demand for characterizing user access patterns using web mining techniques since the informative knowledge extracted from web server log files can not only offer benefits for web site structure improvement but also for better understanding of user navigational behavior. In this paper, we present a web usage mining method, which utilize web user usage and page linkage information to capture user access pattern based on Probabilistic Latent Semantic Analysis (PLSA) model. A specific probabilistic model analysis algorithm, EM algorithm, is applied to the integrated usage data to infer the latent semantic factors as well as generate user session clusters for revealing user access patterns. Experiments have been conducted on real world data set to validate the effectiveness of the proposed approach. The results have shown that the presented method is capable of characterizing the latent semantic factors and generating user profile in terms of weighted page vectors, which may reflect the common access interest exhibited by users among same session cluster.