911 resultados para urine reagent strip


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element simulation of frictionless wedge indentation of a copper strip has been carried out under plane strain conditions. The problem was first modelled using an one-pass contact algorithm. The difficulties associated with using this method to model wedge indentation problems are explained. An alternative procedure which alleviates some of the problems associated with the one-pass contact algorithm is proposed for modelling frictionless wedge indentation. Also, a re-meshing procedure which has to be carried out when the distortion of the elements around the indenter becomes significant, is discussed. A sample problem involving indentation of a 4 mm copper strip by a rigid wedge indenter has been modelled and the results are compared with experimental and theoretical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The higher substrate and chiral auxiliary concentration is a pre-requisite to obtain efficient separation of H-1 NMR signals of enantiomers. The higher concentration of chiral lanthanide shift reagents provides broadened spectral lines resulting in a severe loss of resolution between the enantiomer resonances. In order to circumvent such difficulties, herein we present the application and the usefulness of a selective F-1 decoupled correlation (COSY) experiment which yields proton decoupled proton spectra in the indirect dimension. The potentiality of the experiment is demonstrated on several chiral compounds possessing different functional groups, employing either a lanthanide shift reagent or a solvating reagent as chiral auxiliaries. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion transport across phospholipid vesicles was studied by 7Li and 23Na-NMR using an aqueous anionic paramagnetic shift reagent, dysprosium nitrilotriacetate [Dy(NTA)2]3?, mediated by ionophores, lasalocid A and A23187. The intra- and extracellular 7Li and 23Na-NMR signals were well separated (20?Hz) at mM concentration of the shift reagent. The observed data on the rate constant for lithium transport across DPPC vesicles at various concentrations of the ionophores indicated that lasalocid A is a more efficient carrier for lithium ion compared with the sodium ion transport by this ionophore, while A23187 was not specific to either of the ions (Li or Na). ©1998 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four types of cationic collectors were tested and evaluated for their performance in the reverse flotation of silica from the spiral preconcentrate of Kudremukh iron ore. A stagewise flotation was conducted by adding the reagent in three stages. Starch was used to depress hematite. Silica flotation was found to be very sensitive to the amount of cationic reagent added. The performance of the reagents was evaluated based on the percentage of silica and iron in the concentrate and percent recovery of iron obtained in the concentrate. Tests of significance, namely, t-test and F-test were performed to select the best two reagents for further investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental programme based on statistical analysis was used for optimizing the reverse Rotation of silica from non-magnetic spiral preconcentrate of Kudremukh iron ore. Flotation of silica with amine and starch as the Rotation reagents was studied to estimate the optimum reagent levels at various mesh of grind. The experiments were first carried out using a two level three factor design. Analysis of the results showed that two parameters namely, the concentration level of the amine collector and the mesh of grind, were significant. Experiments based on an orthogonal design of the hexagonal type were then carried out to determine the effects of these two variables, on recovery and grade of the concentrate. Regression equations have been developed as models. Response contours have been plotted using the 'path of steepest ascent', maximum response has been optimized at 0.27 kg/ton of amine collector, 0.5 kg/ton of starch and mesh of grind of 48.7% passing 300 mesh to give a recovery of 83.43% of Fe in the concentrate containing 66.6% Fe and 2.17% SiO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twelve novel cationic cholesterol derivatives with different linkage types between the cationic headgroup and the cholesteryl backbone have been developed. These have been tested for their efficacies as gene transfer agents as mixtures with dioleoyl phosphatidylethanolamine (DOPE). A pronounced improvement in transfection efficiency was observed when the cationic center was linked to the steroid backbone using an ether type bond. Among these, cholest-5-en-3b-oxyethane-N, N,N-trimethylammonium bromide (2a) and cholest-5-en-3b-oxyethane-N, N-dimethyl-N-2-hydroxyethylammonium bromide (3d) showed transfection efficiencies considerably greater than commercially available reagents such as Lipofectin or Lipofectamine. To achieve transfection, 3d did not require DOPE. Increasing hydration at the headgroup level for both ester- and ether-linked amphiphiles resulted in progressive loss of transfection efficiency. Transfection efficiency was also greatly reduced when a 'disorder'-inducing chain like an oleyl (cis-9-octadecenyl) segment was added to these cholesteryl amphiphiles. Importantly, the transfection ability of 2a with DOPE in the presence of serum was significantly greater than for a commercially available reagent, Lipofectamine. This suggests that these novel cholesterol-based amphiphiles might prove promising in applications involving liposome-mediated gene transfection. This investigation demonstrates the importance of structural features at the molecular level for the design of cholesterol-based gene delivery reagents that would aid the development of newer, more efficient formulations based on this class of molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design and synthesis of agents that can abstract zinc from their [CCXX] (C=cysteine; X=cysteine/histidine) boxes by thioldisulfide exchange-having as control, the redox parities of the core sulfur ligands of the reagent and the enzyme, has been illustrated, and their efficiency demonstrated by monitoring the inhibition of the transcription of calf thymus DNA by E. coli RNA polymerase, which harbors two zinc atoms in their [CCXX] boxes of which one is exchangeable. Maximum inhibition possible with removal of the exchangeable zinc was seen with redox-sulfanilamide-glutamate composite. In sharp contrast, normal chelating agents (EDTA, phenanthroline) even in a thousand fold excess showed only marginal inhibition, thus supporting an exchange mechanism for the metal removal. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron beam surface melting has been used to characterise the phase content formed in a number of model 1200 series Al alloys with increasing solidification velocity in the range 2–50 mm s−1, typical of that experienced during continuous strip casting. Phases were extracted from the Al matrix and analysed by X-ray diffraction. A qualitative solidification microstructure selection map has been produced, showing that, for a given Fe content of 0.55 wt.%: with increasing solidification velocity the metastable aluminides FeAl6 and FeAlm displace equilibrium Fe4Al13 at Si contents 0.15 wt.%, and that α-AlFeSi is an equilibrium phase at a Si content ≥0.50 wt.%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An external pipe-crawling device presented in this paper aids the inspection of pipes in hazardous environments and areas inaccessible to humans. The principal component of our design, which uses inchworm type motion, is a compliant ring mechanism actuated using shape memory alloy (SMA) wire. It was fabricated and tested and was reported in our earlier work. But this device had a drawback of low crawling speed (about 1 mm/min) owing to the delay in heating and cooling of the SMA strips in the linear actuation. Additionally, that design also had the difficulties of mounting on pipes with closed ends, large radial span, and the need for housing for electrical insulation and guiding of the SMA wire. In this paper we present a compact design that overcomes the difficulties of the earlier design. In particular, we present a compact compliant mechanism with two halves so as to enable mounting and un-mounting on any closed or open pipe. Another feature is the presence of insulation and guiding of the SMA wire without housing. This design results in a reduction of the radial span of the ring from 22 mm to 12 mm, and the stiffness of the mechanism and the SMA wire are matched. An SMA helical spring is to used in the place of an SMA strip to increase the crawling speed of the device. A microcontroller-based circuitry is also fitted to cyclically.activate the SMA wires and springs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much of the Bangalore sewage is treated in three streams namely Bellandur (K&C Valley),Vrishabhavati and Hebbal-Nagavara stream systems. Among these it is estimated that out of a total of about 500MLD of partially treated sewage is let into the Bellandur tank. We estimate that a total of about 77t N non-industrial anthropogenic nitrogen efflux (mainly urine and excreta) in Bangalore city. This is distributed between that handled by the three sewage streams, soak-pits and land deposition. About 17-24.5t N enters the Bellandur tank daily. This has been happening over few decades and our observations suggest that this approximately 380ha tank is functioning as a C and N removal system with reasonable efficiency. The ammoniacal and nitrate nitrogen content of the water at the discharge points were estimated and found that over 80% of the nitrogen influx and over 75% of the C influx is removed by this tank system. We observed that there are three nitrogen sinks namely bacterial, micro-algal and macrophytes. The micro-algal fraction is dominated by Microcystis and Euglenophyceae members and they appear to constitute a significant fraction. Water hyacinth represents the single largest representative of the macrophytes. This tank has been functioning in this manner for over three decades. We attempt to study this phenomenon from a material balance approach and show that it is functioning with a reasonable degree of satisfaction as a natural wetland. As the population served and concomitant influx into this wetland increases, there is a potential for the system to be overloaded and to collapse. Therefore a better understanding of its function and the need for maintenance is discussed in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic polymer-metal composites (IPMC), piezoelectric polymer composites and nematic elastomer composites are materials, which exhibit characteristics of both sensors and actuators. Large deformation and curvature are observed in these systems when electric potential is applied. Effects of geometric non-linearity due to the chargeinduced motion in these materials are poorly understood. In this paper, a coupled model for understanding the behavior of an ionic polymer beam undergoing large deformation and large curvature is presented. Maxwell's equations and charge transport equations are considered which couple the distribution of the ion concentration and the pressure gradient along length of a cantilever beam with interdigital electrodes. A nonlinear constitutive model is derived accounting for the visco-elasto-plastic behavior of these polymers and based on the hypothesis that the presence of electrical charge stretches/contracts bonds, which give rise to electrical field dependent softening/hardening. Polymer chain orientation in statistical sense plays a role on such softening or hardening. Elementary beam kinematics with large curvature is considered. A model for understanding the deformation due to electrostatic repulsion between asymmetrical charge distributions across the cross-sections is presented. Experimental evidence that Silver(Ag) nanoparticle coated IPMCs can be used for energy harvesting is reported. An IPMC strip is vibrated in different environments and the electric power against a resistive load is measured. The electrical power generated was observed to vary with the environment with maximum power being generated when the strip is in wet state. IPMC based energy harvesting systems have potential applications in tidal wave energy harvesting, residual environmental energy harvesting to power MEMS and NEMS devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the dynamic analysis of flexible,non-linear multi-body beam systems. The focus is on problems where the strains within each elastic body (beam) remain small. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction,results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis,the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here.The analysis methodology can be viewed as a 3-step procedure. First, the sectional properties of beams made of composite materials are determined either based on an asymptotic procedure that involves a 2-D finite element nonlinear analysis of the beam cross-section to capture trapeze effect or using strip-like beam analysis, starting from Classical Laminated Shell Theory (CLST). Second, the dynamic response of non-linear, flexible multi-body beam systems is simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear beam systems. Finally,local 3-D responses in the beams are recovered, based on the 1-D responses predicted in the second step. Numerical examples are presented and results from this analysis are compared with those available in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance improvement of a micromachined patch antenna operating at 30 GHz with a capacitively coupled feed arrangement is presented here. Such antennas are useful for monolithic integration with active components. Specifically, micromachining can be employed to achieve a low dielectric constant region under the patch which causes (i) the suppression of surface waves and hence the increase in radiation efficiency and (ii) increase in the bandwidth. The performance of such a patch antenna can be significantly improved by selecting a coupled feed arrangement. We have optimized the dimensions and location of the capacitive feeding strip to get the maximum improvement in bandwidth. Since this is a totally planar arrangement, and does not involve any stacked structures, this antenna is easy to fabricate using standard microfabrication techniques. The antenna element thus designed has a -10 dB bandwidth of 1600 MHz