952 resultados para upper bound solution
Resumo:
Statistical physics is employed to evaluate the performance of error-correcting codes in the case of finite message length for an ensemble of Gallager's error correcting codes. We follow Gallager's approach of upper-bounding the average decoding error rate, but invoke the replica method to reproduce the tightest general bound to date, and to improve on the most accurate zero-error noise level threshold reported in the literature. The relation between the methods used and those presented in the information theory literature are explored.
Resumo:
In this work the solution of a class of capital investment problems is considered within the framework of mathematical programming. Upon the basis of the net present value criterion, the problems in question are mainly characterized by the fact that the cost of capital is defined as a non-decreasing function of the investment requirements. Capital rationing and some cases of technological dependence are also included, this approach leading to zero-one non-linear programming problems, for which specifically designed solution procedures supported by a general branch and bound development are presented. In the context of both this development and the relevant mathematical properties of the previously mentioned zero-one programs, a generalized zero-one model is also discussed. Finally,a variant of the scheme, connected with the search sequencing of optimal solutions, is presented as an alternative in which reduced storage limitations are encountered.
Resumo:
Negatively charged globular proteins in solution undergo a condensation upon adding trivalent counterions between two critical concentrations C* and C**, C*
Resumo:
The formation of single-soliton or bound-multisoliton states from a single linearly chirped Gaussian pulse in quasi-lossless and lossy fiber spans is examined. The conversion of an input-chirped pulse into soliton states is carried out by virtue of the so-called direct Zakharov-Shabat spectral problem, the solution of which allows one to single out the radiative (dispersive) and soliton constituents of the beam and determine the parameters of the emerging bound state(s). We describe here how the emerging pulse characteristics (the number of bound solitons, the relative soliton power) depend on the input pulse chirp and amplitude. © 2007 Optical Society of America.
Resumo:
One of the most widely studied protein structure prediction models is the hydrophobic-hydrophilic (HP) model, which explains the hydrophobic interaction and tries to maximize the number of contacts among hydrophobic amino-acids. In order to find a lower bound for the number of contacts, a number of heuristics have been proposed, but finding the optimal solution is still a challenge. In this research, we focus on creating a new integer programming model which is capable to provide tractable input for mixed-integer programming solvers, is general enough and allows relaxation with provable good upper bounds. Computational experiments using benchmark problems show that our formulation achieves these goals.
Resumo:
In this note we discuss upper and lower bound for the ruin probability in an insurance model with very heavy-tailed claims and interarrival times.
Resumo:
The stratigraphic and biogeographic distribution of more than 170 species of deep-water agglutinated benthic foraminifers (DWAF) from the North Atlantic and adjacent marginal seas has been compared with paleoenvironmental data (e.g. paleobathymetry, oxygenation of the bottom waters, amount of terrigenous input and substrate disturbance). Six general types of assemblages, in which deep water agglutinated taxa occur, are defined from the Turonian to Maastrichtian times: 1. High latitude slope assemblages 2. Low to mid latitude slope assemblages 3. Flysch-type assemblages 4. Deep water limestone assemblages (,,Scaglia,,-type) 5. Abyssal mixed calcareous-agglutinated assemblages 6. Abyssal purely agglutinated assemblages Latitudinal differences in faunal composition are observed, the most important of which is the lack or extreme paucity of calcareous forms in high latitude assemblages. East-to-west differences appear to be of comparatively minor importance. Most DWAF species occur in all studied regions and are thus considered as cosmopolitan. Biostratigraphic turnovers in the taxonomic content of assemblages are observed in the lowermost Turonian, mid-Campanian and in the upper Maastrichtian to lowermost Paleocene. These datum levels correspond to inter-regional and time-constant paleooceanographic events, which probably also affected the deep-water benthic biota. This allows us to use deep-water agglutinated foraminifers for biostratigraphy in the North Atlantic sequences deposited below CCD and to geographically extend the currently used zonal schemes which have been established in the Carpathian and Alpine areas.
Resumo:
Aurivillius phase thin films of Bi5Ti3(FexMn1−x)O15 with x = 1 (Bi5Ti3FeO15) and 0.7 (Bi5Ti3Fe0.7Mn0.3O15) on SiO2-Si(100) and Pt/Ti/SiO2-Si substrates were fabricated by chemical solution deposition. The method was optimized in order to suppress formation of pyrochlore phase Bi2Ti2O7 and improve crystallinity. The structuralproperties of the films were examined by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Optimum crystallinity and pyrochlore phase suppression was achieved by the addition of 15 to 25 mol. % excess bismuth to the sols. Based on this study, 17.5 mol. % excess bismuth was used in the preparation of Bi2Ti2O7-free films of Bi5Ti3FeO15 on SrTiO3(100) and NdGaO3(001) substrates, confirming the suppression of pyrochlore phase using this excess of bismuth. Thirty percent of the Fe3+ ions in Bi5Ti3FeO15 was substituted with Mn3+ ions to form Bi2Ti2O7-free thin films of Bi5Ti3Fe0.7Mn0.3O15 on Pt/Ti/SiO2-Si, SiO2-Si(100), SrTiO3(100), and NdGaO3(001) substrates. Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films on Pt/Ti/SiO2-Si and SiO2-Si(100) substrates were achieved with a higher degree of a-axis orientation compared with the films on SrTiO3(100) and NdGaO3(001) substrates. Room temperature electromechanical and magnetic properties of the thin films were investigated in order to assess the potential of these materials for piezoelectric,ferroelectric, and multiferroic applications. Vertical piezoresponse force microscopy measurements of the films demonstrate that Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films are piezoelectric at room temperature. Room temperature switching spectroscopy-piezoresponse force microscopy measurements in the presence and absence of an applied bias demonstrate local ferroelectric switching behaviour (180°) in the films. Superconducting quantum interference device magnetometry measurements do not show any room temperature ferromagnetic hysteresis down to an upper detection limit of 2.53 × 10−3 emu; and it is concluded, therefore, that such films are not mutiferroic at room temperature. Piezoresponse force microscopy lithography images of Bi5Ti3Fe0.7Mn0.3O15thin films are presented.
Resumo:
The Wurmian Glaciation of the Alpine Foreland has been reconstructed in different phases as a result of investigations in the Rhine-Bodan region as well as in the Linth area. The whole High Glacial is divided in four main phases: ice advance into the piedmont basins, building-up of the foreland glaciation, high stages and retreat into the inner Alps. This epoch took up perhaps less than 12,000 years. During the period of building, an average increase of ice thickness of about 12 cm per year was sufficient to form an extensive foreland glacier within 5000-7000 years. The snow lines of the stades of the piedmont glaciation as well as of the local glaciers are calculated. Snow lines at about 1500 m a.s.l. led to an inner alpine ice build-up and an advance of glaciers towards the piedmont basins. To produce the foreland ice sheet, low snow lines of 900-1000 m a.s.l. were necessary. An interstadial phase before the maximum glaciation is evidenced by sediment sequences and a 14C-date of 22,100 BP. The chronology of ice retreat after 18 ka BP is still uncertain.
Resumo:
This study describes differences in plankton community structure and in chemical and physical gradients between the offshore West Greenland Current system and inland regions close to the Greenland Ice Sheet during the post-bloom in Godthabsfjorden (64° N, 51° W). The offshore region had pronounced vertical mixing, with centric diatoms and Phaeocystis spp. dominating the phytoplankton, chlorophyll (chl) a (0.3 to 3.9 µg/l) was evenly distributed and nutrients were depleted in the upper 50 m. Ciliates and heterotrophic dinoflagellates constituted equal parts of the protozooplankton biomass. Copepod biomass was dominated by Calanus spp. Primary production, copepod production and the vertical flux were high offshore. The water column was stratified in the fjord, causing chl a to be concentrated in a thin sub-surface layer. Nutrients were depleted above the pycnocline, and Thalassiosira spp. dominated the phytoplankton assemblage close to the ice sheet. Dinoflagellates dominated the protozooplankton biomass, whereas copepod biomass was low and was dominated by Pseudocalanus spp. and Metridia longa. Primary production was low in the outer part of the fjord but considerably higher in the inner parts of the fjord. Copepod production was exceeded by protozooplankton production in the fjord. The results of both physical/chemical factors and biological parameters suggest separation of offshore and fjord systems.
Resumo:
This paper describes measurements from shortwave radiation radiosonde ascents done at the Atlantische Expedition 1969. Using the results from a total of 67 ascents mean components of the shortwave radiation budget of the atmospheric layer between the ocean surface and the top of the ascent are discussed. The influence of clouds on the radiation balance is shown by dividing the ascents in classes of cloudiness and cloud altitude. Thereby the albedo of the ocean surface is increasing with increasing amount of cloudiness. Similar the albedo of the troposphere increases involving an increased heating rate of the atmospheric layer.