951 resultados para transient loads
Resumo:
Due to their high thermal efficiency, diesel engines have excellent fuel economy and have been widely used as a power source for many vehicles. Diesel engines emit less greenhouse gases (carbon dioxide) compared with gasoline engines. However, diesel engines emit large amounts of particulate matter (PM) which can imperil human health. The best way to reduce the particulate matter is by using the Diesel Particulate Filter (DPF) system which consists of a wall-flow monolith which can trap particulates, and the DPF can be periodically regenerated to remove the collected particulates. The estimation of the PM mass accumulated in the DPF and total pressure drop across the filter are very important in order to determine when to carry out the active regeneration for the DPF. In this project, by developing a filtration model and a pressure drop model, we can estimate the PM mass and the total pressure drop, then, these two models can be linked with a regeneration model which has been developed previously to predict when to regenerate the filter. There results of this project were: 1 Reproduce a filtration model and simulate the processes of filtration. By studying the deep bed filtration and cake filtration, stages and quantity of mass accumulated in the DPF can be estimated. It was found that the filtration efficiency increases faster during the deep-bed filtration than that during the cake filtration. A “unit collector” theory was used in our filtration model which can explain the mechanism of the filtration very well. 2 Perform a parametric study on the pressure drop model for changes in engine exhaust flow rate, deposit layer thickness, and inlet temperature. It was found that there are five primary variables impacting the pressure drop in the DPF which are temperature gradient along the channel, deposit layer thickness, deposit layer permeability, wall thickness, and wall permeability. 3 Link the filtration model and the pressure drop model with the regeneration model to determine the time to carry out the regeneration of the DPF. It was found that the regeneration should be initiated when the cake layer is at a certain thickness, since a cake layer with either too big or too small an amount of particulates will need more thermal energy to reach a higher regeneration efficiency. 4 Formulate diesel particulate trap regeneration strategies for real world driving conditions to find out the best desirable conditions for DPF regeneration. It was found that the regeneration should be initiated when the vehicle’s speed is high and during which there should not be any stops from the vehicle. Moreover, the regeneration duration is about 120 seconds and the inlet temperature for the regeneration is 710K.
Resumo:
Due to the inherent limitations of DXA, assessment of the biomechanical properties of vertebral bodies relies increasingly on CT-based finite element (FE) models, but these often use simplistic material behaviour and/or single loading cases. In this study, we applied a novel constitutive law for bone elasticity, plasticity and damage to FE models created from coarsened pQCT images of human vertebrae, and compared vertebral stiffness, strength and damage accumulation for axial compression, anterior flexion and a combination of these two cases. FE axial stiffness and strength correlated with experiments and were linearly related to flexion properties. In all loading modes, damage localised preferentially in the trabecular compartment. Damage for the combined loading was higher than cumulated damage produced by individual compression and flexion. In conclusion, this FE method predicts stiffness and strength of vertebral bodies from CT images with clinical resolution and provides insight into damage accumulation in various loading modes.
Resumo:
Increased fracture risk has been reported for the adjacent vertebral bodies after vertebroplasty. This increase has been partly attributed to the high Young's modulus of commonly used polymethylmethacrylate (PMMA). Therefore, a compliant bone cement of PMMA with a bulk modulus closer to the apparent modulus of cancellous bone has been produced. This compliant bone cement was achieved by introducing pores in the cement. Due to the reduced failure strength of that porous PMMA cement, cancellous bone augmented with such cement could deteriorate under dynamic loading. The aim of the present study was to assess the potential of acute failure, particle generation and mechanical properties of cancellous bone augmented with this compliant cement in comparison to regular cement. For this purpose, vertebral biopsies were augmented with porous- and regular PMMA bone cement, submitted to dynamic tests and compression to failure. Changes in Young's modulus and height due to dynamic loading were determined. Afterwards, yield strength and Young's modulus were determined by compressive tests to failure and compared to the individual composite materials. No failure occurred and no particle generation could be observed during dynamical testing for both groups. Height loss was significantly higher for the porous cement composite (0.53+/-0.21%) in comparison to the biopsies augmented with regular cement (0.16+/-0.1%). Young's modulus of biopsies augmented with porous PMMA was comparable to cancellous bone or porous cement alone (200-700 MPa). The yield strength of those biopsies (21.1+/-4.1 MPa) was around two times higher than for porous cement alone (11.6+/-3.3 MPa).
Resumo:
The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.
Resumo:
To study the role of the epithelial calcium channel transient receptor potential vanilloid type 6 (TRPV6) and the calcium-binding protein calbindin-D9k in intestinal calcium absorption, TRPV6 knockout (KO), calbindin-D9k KO, and TRPV6/calbindin-D(9k) double-KO (DKO) mice were generated. TRPV6 KO, calbindin-D9k KO, and TRPV6/calbindin-D9k DKO mice have serum calcium levels similar to those of wild-type (WT) mice ( approximately 10 mg Ca2+/dl). In the TRPV6 KO and the DKO mice, however, there is a 1.8-fold increase in serum PTH levels (P < 0.05 compared with WT). Active intestinal calcium transport was measured using the everted gut sac method. Under low dietary calcium conditions there was a 4.1-, 2.9-, and 3.9-fold increase in calcium transport in the duodenum of WT, TRPV6 KO, and calbindin-D9k KO mice, respectively (n = 8-22 per group; P > 0.1, WT vs. calbindin-D9k KO, and P < 0.05, WT vs. TRPV6 KO on the low-calcium diet). Duodenal calcium transport was increased 2.1-fold in the TRPV6/calbindin-D9k DKO mice fed the low-calcium diet (P < 0.05, WT vs. DKO). Active calcium transport was not stimulated by low dietary calcium in the ileum of the WT or KO mice. 1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient null mutant and WT mice also resulted in a significant increase in duodenal calcium transport (1.4- to 2.0-fold, P < 0.05 compared with vitamin D-deficient mice). This study provides evidence for the first time using null mutant mice that significant active intestinal calcium transport occurs in the absence of TRPV6 and calbindin-D9k, thus challenging the dogma that TRPV6 and calbindin-D9k are essential for vitamin D-induced active intestinal calcium transport.
Resumo:
This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.
Resumo:
The combustion strategy in a diesel engine has an impact on the emissions, fuel consumption and the exhaust temperatures. The PM mass retained in the CPF is a function of NO2 and PM concentrations in addition to the exhaust temperatures and the flow rates. Thus the engine combustion strategy affects exhaust characteristics which has an impact on the CPF operation and PM mass retained and oxidized. In this report, a process has been developed to simulate the relationship between engine calibration, performance and HC and PM oxidation in the DOC and CPF respectively. Fuel Rail Pressure (FRP) and Start of Injection (SOI) sweeps were carried out at five steady state engine operating conditions. This data, along with data from a previously carried out surrogate HD-FTP cycle [1], was used to create a transfer function model which estimates the engine out emissions, flow rates, temperatures for varied FRP and SOI over a transient cycle. Four different calibrations (test cases) were considered in this study, which were simulated through the transfer function model and the DOC model [1, 2]. The DOC outputs were then input into a model which simulates the NO2 assisted and thermal PM oxidation inside a CPF. Finally, results were analyzed as to how engine calibration impacts the engine fuel consumption, HC oxidation in the DOC and the PM oxidation in the CPF. Also, active regeneration for various test cases was simulated and a comparative analysis of the fuel penalties involved was carried out.
Resumo:
In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.
Resumo:
BACKGROUND: The Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic attack (PERFORM) study is an international double-blind, randomized controlled trial designed to investigate the superiority of the specific TP receptor antagonist terutroban (30 mg/day) over aspirin (100 mg/day), in reducing cerebrovascular and cardiovascular events in patients with a recent history of ischemic stroke or transient ischemic attack. Here we describe the baseline characteristics of the population. METHODS AND RESULTS: Parameters recorded at baseline included vital signs, risk factors, medical history, and concomitant treatments, as well as stroke subtype, stroke-associated disability on the modified Rankin scale, and scores on scales for cognitive function and dependency. Eight hundred and two centers in 46 countries recruited a total of 19,119 patients between February 2006 and April 2008. The population is evenly distributed and is not dominated by any one country or region. The mean +/- SD age was 67.2 +/- 7.9 years, 63% were male, and 83% Caucasian; 83% had hypertension, and about half the population smoked or had quit smoking. Ninety percent of the qualifying events were ischemic stroke, 67% of which were classified as atherothrombotic or likely atherothrombotic (pure or coexisting with another cause). Modified Rankin scale scores showed slight or no disability in 83% of the population, while the scores on the Mini-Mental State Examination, Isaacs' Set Test, Zazzo's Cancellation Test, and the instrumental activities of daily living scale showed a good level of cognitive function and autonomy. CONCLUSIONS: The PERFORM study population is homogeneous in terms of demographic and disease characteristics. With 19,119 patients, the PERFORM study is powered to test the superiority of terutroban over aspirin in the secondary prevention of cerebrovascular and cardiovascular events in patients with a recent history of ischemic stroke or transient ischemic attack.
Resumo:
BACKGROUND: Ischemic stroke is the leading cause of mortality worldwide and a major contributor to neurological disability and dementia. Terutroban is a specific TP receptor antagonist with antithrombotic, antivasoconstrictive, and antiatherosclerotic properties, which may be of interest for the secondary prevention of ischemic stroke. This article describes the rationale and design of the Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic Attack (PERFORM) Study, which aims to demonstrate the superiority of the efficacy of terutroban versus aspirin in secondary prevention of cerebrovascular and cardiovascular events. METHODS AND RESULTS: The PERFORM Study is a multicenter, randomized, double-blind, parallel-group study being carried out in 802 centers in 46 countries. The study population includes patients aged > or =55 years, having suffered an ischemic stroke (< or =3 months) or a transient ischemic attack (< or =8 days). Participants are randomly allocated to terutroban (30 mg/day) or aspirin (100 mg/day). The primary efficacy endpoint is a composite of ischemic stroke (fatal or nonfatal), myocardial infarction (fatal or nonfatal), or other vascular death (excluding hemorrhagic death of any origin). Safety is being evaluated by assessing hemorrhagic events. Follow-up is expected to last for 2-4 years. Assuming a relative risk reduction of 13%, the expected number of primary events is 2,340. To obtain statistical power of 90%, this requires inclusion of at least 18,000 patients in this event-driven trial. The first patient was randomized in February 2006. CONCLUSIONS: The PERFORM Study will explore the benefits and safety of terutroban in secondary cardiovascular prevention after a cerebral ischemic event.
Resumo:
BACKGROUND: Depressive symptoms and caregiving stress may contribute to cardiovascular disease (CVD) via chronic platelet activation; however, it remains unclear whether this elevated activation constitutes a trait or state marker. The primary objective was to investigate whether persistent depressive symptoms would relate to elevated platelet activation in response to acute psychological stress over a three-year period. METHODS: Depressive symptoms (Brief Symptom Inventory) were assessed among 99 spousal dementia caregivers (52-88 years). Platelet P-selectin expression was assessed in vivo using flow cytometry at three time-points over the course of an acute stress test: baseline, post-stress, and after 14 min of recovery. Two competing structural analytic models of depressive symptoms and platelet hyperactivity with three yearly assessments were compared. RESULTS: Although depressive symptoms were generally in the subclinical range, their persistent elevation was associated with heightened platelet reactivity and recovery at all three-years while the change in depressive symptoms from the previous year did not predict platelet activity. LIMITATIONS: These results focus on caregivers providing consistent home care, while future studies may extend these results by modeling major caregiving stressors. CONCLUSIONS: Enduring aspects of negative affect, even among those not suffering from clinical depression are related to hemostatic changes, in this case platelet reactivity, which might be one mechanism for previously reported increase in CVD risk among elderly Alzheimer caregivers.