977 resultados para tooth reimplantation
Resumo:
We describe 27 subjects (11 women) from five generations of a family with an apparently hitherto undescribed ectodermal dysplasia. All of them presented dental and/or nail alterations only. A genetic analysis of the family suggests an autosomal dominant gene. Differential diagnosis considered eight conditions belonging to the same odonto-onychic (2-3) subgroup, as well as Fried's tooth and nail syndrome and hypodontia and nail dysgenesis (both in 1-2-3 subgroup).
Resumo:
In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.
Resumo:
Permanent magnet synchronous machines with fractional-slot non-overlapping windings (FSPMSM), also known as tooth-coil winding permanent magnet synchronous machines (TCW PMSM), have been under intensive research during the latest decade. There are many optimization routines explained and implemented in the literature in order to improve the characteristics of this machine type. This paper introduces a new technique for torque ripple minimization in TCW PMSM. The source of torque harmonics is also described. The low order torque harmonics can be harmful for a variety of applications, such as direct drive wind generators, direct drive light vehicle electrical motors, and for some high precision servo applications. The reduction of the torque ripple harmonics with the lowest orders (6th and 12th) is realized by machine geometry optimization technique using finite element analysis (FEA). The presented optimization technique includes the stator geometry adjustment in TCW PMSMs with rotor surface permanent magnets and with rotor embedded permanent magnets. Influence of the permanent magnet skewing on the torque ripple reduction and cogging torque elimination was also investigated. It was implemented separately and together with the stator optimization technique. As a result, the reduction of some torque ripple harmonics was attained.
Resumo:
Third molar extraction is a common procedure frequently accompanied by moderate or severe pain, and involves sufficient numbers of patients to make studies relatively easy to perform. The aim of the present study was to determine the efficacy and safety of the therapeutic combination of 10 mg piroxicam, 1 mg dexamethasone, 35 mg orphenadrine citrate, and 2.5 mg cyanocobalamin (Rheumazin®) when compared with 20 mg piroxicam alone (Feldene®) in mandibular third molar surgery. Eighty patients scheduled for removal of the third molar were included in this randomized and double-blind study. They received (vo) Rheumazin or Feldene 30 min after tooth extraction and once daily for 4 consecutive days. Pain was determined by a visual analogue scale and by the need for escape analgesia (paracetamol). Facial swelling was evaluated with a measuring tape and adverse effects and patient satisfaction were recorded. There was no statistically significant difference in facial swelling between Rheumazin and Feldene (control group). Both drugs were equally effective in the control of pain, with Rheumazin displaying less adverse effects than Feldene. Therefore, Rheumazin appears to provide a better risk/benefit ratio in the mandibular molar surgery. Since the side effects resulting from nonsteroidal anti-inflammatory drug administration are a severe limitation to the routine use of these drugs in clinical practice, our results suggest that Rheumazin can be a good choice for third molar removal treatment.
Resumo:
Electrical machine drives are the most electrical energy-consuming systems worldwide. The largest proportion of drives is found in industrial applications. There are, however many other applications that are also based on the use of electrical machines, because they have a relatively high efficiency, a low noise level, and do not produce local pollution. Electrical machines can be classified into several categories. One of the most commonly used electrical machine types (especially in the industry) is induction motors, also known as asynchronous machines. They have a mature production process and a robust rotor construction. However, in the world pursuing higher energy efficiency with reasonable investments not every application receives the advantage of using this type of motor drives. The main drawback of induction motors is the fact that they need slipcaused and thus loss-generating current in the rotor, and additional stator current for magnetic field production along with the torque-producing current. This can reduce the electric motor drive efficiency, especially in low-speed, low-power applications. Often, when high torque density is required together with low losses, it is desirable to apply permanent magnet technology, because in this case there is no need to use current to produce the basic excitation of the machine. This promotes the effectiveness of copper use in the stator, and further, there is no rotor current in these machines. Again, if permanent magnets with a high remanent flux density are used, the air gap flux density can be higher than in conventional induction motors. These advantages have raised the popularity of PMSMs in some challenging applications, such as hybrid electric vehicles (HEV), wind turbines, and home appliances. Usually, a correctly designed PMSM has a higher efficiency and consequently lower losses than its induction machine counterparts. Therefore, the use of these electrical machines reduces the energy consumption of the whole system to some extent, which can provide good motivation to apply permanent magnet technology to electrical machines. However, the cost of high performance rare earth permanent magnets in these machines may not be affordable in many industrial applications, because the tight competition between the manufacturers dictates the rules of low-cost and highly robust solutions, where asynchronous machines seem to be more feasible at the moment. Two main electromagnetic components of an electrical machine are the stator and the rotor. In the case of a conventional radial flux PMSM, the stator contains magnetic circuit lamination and stator winding, and the rotor consists of rotor steel (laminated or solid) and permanent magnets. The lamination itself does not significantly influence the total cost of the machine, even though it can considerably increase the construction complexity, as it requires a special assembly arrangement. However, thin metal sheet processing methods are very effective and economically feasible. Therefore, the cost of the machine is mainly affected by the stator winding and the permanent magnets. The work proposed in this doctoral dissertation comprises a description and analysis of two approaches of PMSM cost reduction: one on the rotor side and the other on the stator side. The first approach on the rotor side includes the use of low-cost and abundant ferrite magnets together with a tooth-coil winding topology and an outer rotor construction. The second approach on the stator side exploits the use of a modular stator structure instead of a monolithic one. PMSMs with the proposed structures were thoroughly analysed by finite element method based tools (FEM). It was found out that by implementing the described principles, some favourable characteristics of the machine (mainly concerning the machine size) will inevitable be compromised. However, the main target of the proposed approaches is not to compete with conventional rare earth PMSMs, but to reduce the price at which they can be implemented in industrial applications, keeping their dimensions at the same level or lower than those of a typical electrical machine used in the industry at the moment. The measurement results of the prototypes show that the main performance characteristics of these machines are at an acceptable level. It is shown that with certain specific actions it is possible to achieve a desirable efficiency level of the machine with the proposed cost reduction methods.
Resumo:
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants.
Resumo:
It has been demonstrated that carbon nanotubes (CNTs) associated with sodium hyaluronate (HY-CNTs) accelerate bone repair in the tooth sockets of rats. Before clinical application of HY-CNTs, it is important to assess their biocompatibility. Moreover, cardiac toxicity may be caused by the translocation of these particles to the blood stream. The aim of this study was to evaluate possible changes in cardiovascular function in male Wistar rats whose tooth sockets were treated with either CNTs or HY-CNTs (100 μg/mL, 0.1 mL). Blood pressure and heart rate were monitored in conscious rats 7 days after treatment. Cardiac function was evaluated using the Langendorff perfusion technique. The data showed no changes in blood pressure or heart rate in rats treated with either CNTs or HY-CNTs, and no significant changes in cardiac function were found in any of the groups. To confirm these findings, experiments were conducted in rats injected intraperitoneally with a high concentration of either CNTs or HY-CNTs (0.75 mg/kg). The same parameters were analyzed and similar results were observed. The results obtained 7 days following injection indicate that the administration of low concentrations of CNTs or HY-CNTs directly into tooth sockets did not cause any significant change in cardiovascular function in the rats. The present findings support the possibility of using these biocomposites in humans.
Resumo:
Wind is one of the most compelling forms of indirect solar energy. Available now, the conversion of wind power into electricity is and will continue to be an important element of energy self-sufficiency planning. This paper is one in a series intended to report on the development of a new type of generator for wind energy; a compact, high-power, direct-drive permanent magnet synchronous generator (DD-PMSG) that uses direct liquid cooling (LC) of the stator windings to manage Joule heating losses. The main param-eters of the subject LC DD-PMSG are 8 MW, 3.3 kV, and 11 Hz. The stator winding is cooled directly by deionized water, which flows through the continuous hollow conductor of each stator tooth-coil winding. The design of the machine is to a large degree subordinate to the use of these solid-copper tooth-coils. Both steady-state and timedependent temperature distributions for LC DD-PMSG were examined with calculations based on a lumpedparameter thermal model, which makes it possible to account for uneven heat loss distribution in the stator conductors and the conductor cooling system. Transient calculations reveal the copper winding temperature distribution for an example duty cycle during variable-speed wind turbine operation. The cooling performance of the liquid cooled tooth-coil design was predicted via finite element analysis. An instrumented cooling loop featuring a pair of LC tooth-coils embedded in a lamination stack was built and laboratory tested to verify the analytical model. Predicted and measured results were in agreement, confirming the predicted satisfactory operation of the LC DD-PMSG cooling technology approach as a whole.
Resumo:
The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.
Resumo:
Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Preexisting fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales.
Resumo:
Presented at Access 2014, winner of poster contest.
Resumo:
This letter remarks on the arrival of spring and Eleanore Celeste soon reuniting with Arthur. She describes some pain concerning a wisdom tooth cutting and stepping on a tack and then stubbing her foot on her bed. This letter is labelled number 135.
Resumo:
The letter begins with discussion about possible improper handling of "the books". She then describes "new plans" for their home. The second letter discusses her mother having five teeth extracted and two abscesses burned off. Her sister also had a wisdom tooth removed. The first letter is labelled number 56 and the second 57.
Resumo:
Affiliation: Jean-François Gauchat : Département de Pharmacologie, Faculté de médecine, Université de Montréal
Resumo:
Objectifs : Le bruxisme survenant au cours du sommeil est un trouble du mouvement caractérisé par du grincement de dents et l’activité rythmique des muscles masticateurs (ARMM). Le bruxisme/ARMM est souvent associé à des mouvements du corps et des à éveils corticaux. Une séquence d’activation précède le ARMM/bruxisme. Ces événements incluent une augmentation des variables suivants : l’activité sympathique (-4 minutes), les activités encéphalographique (-4 second), le fréquence cardiaque, l’amplitude de la respiration (-1 second) et l’activité des muscle suprahyoïdiens (-0.8 second). La présente étude a examiné l’association entre le bruxisme et les changements de la pression artérielle. Méthodes: Dix sujets avec le bruxisme (5 hommes, 5 femmes, âge moyen = 26 ± 1,8) ont complétés 3 nuits de polysomnographie qui comprenait l'enregistrement non invasive de la pression artérielle. La première nuit a servi de dépistage et d’habituation au laboratoire. L'analyse a été réalisée sur les deuxièmes et troisièmes nuits enregistrements. Seuls les épisodes de bruxisme isolés survenant au cours du stade 2 du sommeil ont été utilisés pour l’analyse, pour un total de 65 épisodes. Les mesures des pressions systolique et diastolique ont été prises 20 battements avant et 23 battements après l'apparition de chaque épisode bruxisme lors du sommeil. Les épisodes de bruxisme ont été classés comme suit: 1) bruxisme avec éveil cortical; 2) bruxisme avec mouvement du corps (MC), 3) bruxisme avec éveil cortical et MC. Une quatrième catégorie, bruxisme seul, a également été analysée, mais utilisée comme donnée préliminaire puisque la catégorie se composait de seulement 4 épisodes de bruxisme. Résultats: Les deux pressions systolique et diastolique ont augmenté avec les épisodes de bruxisme. Cette augmentation a été statistiquement significative pour la pression systolique et diastolique pour les épisodes de bruxisme avec éveil cortical et/ou MC (p ≤ 0,05). L’augmentation moyenne de la pression (systolique / diastolique ± SE) a été : 28,4 ± 2,4/13,2 ± 1,5 mm Hg pour le bruxisme avec éveil cortical; 30,7 ± 1,6/19.4 ± 2.3 mm Hg pour bruxisme avec MC; 26.4 ± 2,8 / 14,6 ± 2.0mm Hg pour bruxisme avec éveil cortical et MC; 22,9 ± 5,2/12,4 ± 3,3mm Hg pour les épisodes de bruxisme seuls. Conclusion: Le bruxisme du sommeil est associé à des hausses de la pression artérielle pendant le sommeil. Cette hausse est supérieure dans les épisodes de bruxisme associés à un éveil cortical et / ou MC, qui sont souvent associés avec les événements bruxisme. Ces résultats sont en accord avec nos observations antérieures, où le bruxisme est précédé par une augmentation de l'activité sympathique et de la tachycardie sinusale.