844 resultados para titanium scaffold
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Tese de Doutoramento em Ciências (Especialidade de Física)
Resumo:
Programa Doutoral em Engenharia Biomédica
Resumo:
Tese de Doutoramento em Engenharia Eletrónica e de Computadores.
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.
Resumo:
Despite the vast investigation and the large amount of products already available in the market to treat the different bone defects there is still a growing need to develop more advanced and complex therapeutic strategies. In this context, a mixture of Marine Hydroxyapatite-Fluorapatite:Collagen (HA-FP:ASC) seems to be a promising solution to overcome these bone defects, specifically, dental defects. HA-FP particles (20–63 μm) were obtained through pyrolysis (950°C, 12 h) of shark teeth (Isurus oxyrinchus, P. glauca), and Type I collagen was isolated from Prionace glauca skin as previously described (1). After the steps of purification, collagen was solubilized in 0.5 M acetic acid and HA-FP added producing three different formulations: were produced, 30:70, 50:50 and 70:30 of HA-FP:ASC, respectively. EDC/NHS and HMDI binding agents were used to stabilize the produced scaffolds. Mechanical properties were evaluated by compression tests. SEM analysis allowed observing the mineral deposition, after immersion in simulated body fluid and also permitted to evaluate how homogenous was the distribution of HA-FP in the different scaffold formulations, also confirmed by μ-CT assay. It was readily visible by Cytotoxicity and life/dead CLSM assays that cells were able to adhere and proliferate in the produced scaffolds. Scaffolds crosslinked with EDC/NHS showed lower cytotoxicity, being the ones chosen for further cellular evaluation.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)
Resumo:
Personalized tissue engineering and regenerative medicine (TERM) therapies propose patient-oriented effective solutions, considering individual needs. Cell-based therapies, for example, may benefit from cell sources that enable easier autologous set-ups or from recent developments on IPS cells technologies towards effective personalized therapeutics. Furthermore, the customization of scaffold materials to perfectly fit a patientâ s tissue defect through rapid prototyping technologies, also known as 3D printing, is now a reality. Nevertheless, the timing to expand cells or to obtain functional in vitrotissue substitutes prior to implantation prevents advancements towards routine use upon patient´s needs. Thus, personalized therapies also anticipate the importance of creating off-the-shelf solutions to enable immediately available tissue engineered products. This paper reviews the main recent developments and future challenges to enable personalized TERM approaches and to bring these technologies closer to clinical applications.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
The patient was a 4-month-old infant, who underwent persistent ductus arteriosus interruption with titanium clips at the age of 13 days and, since the age of 2 months, had crises of hypoxia and hypertonicity. After clinical investigation, the presence of pulmonary hypertension was confirmed and left ventricular inflow tract obstruction was suspected. The patient underwent surgical treatment at the age of 4 months, during which right and left ventricular endocardial fibrosis was identified. The fibrosis was resected, but the infant had an unfavorable clinical evolution with significant diastolic restriction and died on the sixth postoperative day. Anatomicopathological and surgical findings suggested endomyocardial fibrosis, although that pathology is very rare at the patient's age.
Resumo:
The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.