983 resultados para tin dioxide films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we have investigated the nonlinear optical properties of self-assembled films formed from ZnO colloidal spheres by z-scan technique. The sign of the nonlinear component of refractive index of the material remains the same; however, a switching from reverse saturable absorption to saturable absorption has been observed as the material changes from colloid to self-assembled film. These different nonlinear characteristics can be mainly attributed to ZnO defect states and electronic effects when the colloidal solution is transformed into self-assembled monolayers. We investigated the intensity, wavelength and size dependence of saturable and reverse saturable absorption of ZnO self-assembled films and colloids. Values of the imaginary part of third-order susceptibility are calculated for particles of size in the range 20–300 nm at different intensity levels ranging from 40 to 325MW/cm2 within the wavelength range of 450–650 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dept.of Physics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International School of Photonics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkylation of phenol with methanol has been carried out over Sn-La and Sn-Sm mixed oxides of varying compositions at 623 K in a vapour phase flow reactor. It is found that the product selectivity is greatly influenced by the acid-base properties of the catalysts. Ortho-cresol formation is favoured over catalysts with weak acid sites whereas formation of 2,6-xylenol occurs in the presence of stronger acid sites. The cyclohexanol decomposition reaction and titrimetric method using Hammett indicators have been employed to elucidate the acid-base properties of the catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we have tried to evaluate systematically the surface properties of sulphated tin oxide systems modified with three different transition metal oxides viz. iron oxide, tungsten oxide and molybdenum oxide. The catalytic activities of these systems are checked and compared by carrying out some industrially important reactions such as oxidative dehydrogenation of ethylbenzene and Friedel-Crafts reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoconductivity (PC) processes may be the most suitable technique for obtaining information about the states in the gap. It finds applications in photovoItaics, photo detection and radiation measurements. The main task in the area of photovoltaics, is to increase the efficiency of the device and also to develop new materials with good optoelectronic properties useful for energy conversion, keeping the idea of cost effectiveness. Photoconduction includes generation and recombination of carriers and their transport to the electrodes. So thermal relaxation process, charge carrier statistics, effects of electrodes and several mechanisms of recombination are involved in photoconductivity.A major effect of trapping is to make the experimentally observed decay time of photocurrent, longer than carrier lifetime. If no trapping centers are present, then observed photocurrent will decay in the same way as the density of free carriers and the observed decay time will be equal to carrier lifetime. If the density of free carriers is much less than density of trapped carriers, the entire decay of photocurrent is effectively dominated by the rate of trap emptying rather than by the rate of recombination.In the present study, the decay time of carriers was measured using photoconductive decay (PCD) technique. For the measurements, the film was loaded in a liquid Helium cryostat and the temperature was controlled using Lakshore Auto tuning temperature controller (Model 321). White light was used to illuminate the required area of the sample. Heat radiation from the light source was avoided by passing the light beam through a water filter. The decay current. after switching off the illumination. was measured using a Kiethely 2000 multi meter. Sets of PCD measurements were taken varying sample temperature, sample preparation temperature, thickness of the film, partial pressure of Oxygen and concentration of a particular element in a compound. Decay times were calculated using the rate window technique, which is a decay sampling technique particularly suited to computerized analysis. For PCD curves with two well-defined regions, two windows were chosen, one at the fast decay region and the other at the slow decay region. The curves in a particular window were exponentially fitted using Microsoft Excel 2000 programme. These decay times were plotted against sample temperature and sample preparation temperature to study the effect of various defects in the film. These studies were done in order to optimize conditions of preparation technique so as to get good photosensitive samples. useful for photovoltaic applications.Materials selected for the study were CdS, In2Se3, CuIn2Se3 and CuInS2• Photoconductivity studies done on these samples are organised in six chapters including introduction and conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoacoustic investigations carried out on different photonic materials are presented in this thesis. Photonic materials selected for the investigation are tape cast ceramics, muItilayer dielectric coatings, organic dye doped PVA films and PMMA matrix doped with dye mixtures. The studies are performed by the measurement of photoacoustic signal generated as a result of modulated cw laser irradiation of samples. The gas-microphone scheme is employed for the detection of photoacoustic signal. The different measurements reported here reveal the adaptability and utility of the PA technique for the characterization of photonic materials.Ceramics find applications in the field of microelectronics industry. Tape cast ceramics are the building blocks of many electronic components and certain ceramic tapes are used as thermal barriers. The thermal parameters of these tapes will not be the same as that of thin films of the same materials. Parameters are influenced by the presence of foreign bodies in the matrix and the sample preparation technique. Measurements are done on ceramic tapes of Zirconia, Zirconia-Alumina combination, barium titanate, barium tin titanate, silicon carbide, lead zirconate titanateil'Z'T) and lead magnesium niobate titanate(PMNPT). Various configurations viz. heat reflection geometry and heat transmission geometry of the photoacoustic technique have been used for the evaluation of different thermal parameters of the sample. Heat reflection geometry of the PA cell has been used for the evaluation of thermal effusivity and heat transmission geometry has been made use of in the evaluation of thermal diffusivity. From the thermal diffusivity and thermal effusivity values, thermal conductivity is also calculated. The calculated values are nearly the same as the values reported for pure materials. This shows the feasibility of photoacoustic technique for the thermal characterization of ceramic tapes.Organic dyes find applications as holographic recording medium and as active media for laser operations. Knowledge of the photochemical stability of the material is essential if it has to be used tor any of these applications. Mixing one dye with another can change the properties of the resulting system. Through careful mixing of the dyes in appropriate proportions and incorporating them in polymer matrices, media of required stability can be prepared. Investigations are carried out on Rhodamine 6GRhodamine B mixture doped PMMA samples. Addition of RhB in small amounts is found to stabilize Rh6G against photodegradation and addition of Rh6G into RhB increases the photosensitivity of the latter. The PA technique has been successfully employed for the monitoring of dye mixture doped PMMA sample. The same technique has been used for the monitoring of photodegradation ofa laser dye, cresyl violet doped polyvinyl alcohol also.Another important application of photoacoustic technique is in nondestructive evaluation of layered samples. Depth profiling capability of PA technique has been used for the non-destructive testing of multilayer dielectric films, which are highly reflecting in the wavelength range selected for investigations. Eventhough calculation of thickness of the film is not possible, number of layers present in the system can be found out using PA technique. The phase plot has clear step like discontinuities, the number of which coincides with the number of layers present in the multilayer stack. This shows the sensitivity of PA signal phase to boundaries in a layered structure. This aspect of PA signal can be utilized in non-destructive depth profiling of reflecting samples and for the identification of defects in layered structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-destructive testing (NDT) is the use of non-invasive techniques to determine the integrity of a material, component, or structure. Engineers and scientists use NDT in a variety of applications, including medical imaging, materials analysis, and process control.Photothermal beam deflection technique is one of the most promising NDT technologies. Tremendous R&D effort has been made for improving the efficiency and simplicity of this technique. It is a popular technique because it can probe surfaces irrespective of the size of the sample and its surroundings. This technique has been used to characterize several semiconductor materials, because of its non-destructive and non-contact evaluation strategy. Its application further extends to analysis of wide variety of materials. Instrumentation of a NDT technique is very crucial for any material analysis. Chapter two explores the various excitation sources, source modulation techniques, detection and signal processing schemes currently practised. The features of the experimental arrangement including the steps for alignment, automation, data acquisition and data analysis are explained giving due importance to details.Theoretical studies form the backbone of photothermal techniques. The outcome of a theoretical work is the foundation of an application.The reliability of the theoretical model developed and used is proven from the studies done on crystalline.The technique is applied for analysis of transport properties such as thermal diffusivity, mobility, surface recombination velocity and minority carrier life time of the material and thermal imaging of solar cell absorber layer materials like CuInS2, CuInSe2 and SnS thin films.analysis of In2S3 thin films, which are used as buffer layer material in solar cells. The various influences of film composition, chlorine and silver incorporation in this material is brought out from the measurement of transport properties and analysis of sub band gap levels.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention. Chapter six thus elucidates the theoretical aspects of application of photothermal techniques for solar cell analysis. The experimental design and method for determination of solar cell efficiency, optimum load resistance and series resistance with results from the analysis of CuInS2/In2S3 based solar cell forms the skeleton of this chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present the results of our attempt to build a compact photothermal spectrometer capable of both manual and automated mode of operation.The salient features of the system include the ability to analyse thin film, powder and polymer samples. The tool has been in use to investigate thermal, optical and transport properties. Binary and ternary semiconducting thin films were analysed for their thermal diffusivities. The system could perform thickness measurements nondestructively. Ion implanted semiconductors are widely studied for the effect of radiation induced defects. We could perform nondestructive imaging of defects using our spectrometer.The results reported in his thesis on the above in addition to studies on In2S3 and transparent conducting oxide ZnO have been achieved with this spectrometer. Various polymer samples have been easily analysed for their thermal diffusivities. The technique provided ease of analysis not achieved with conventional techniques like TGA and DSC. Industrial application of the tool has also been proved by analyzing defects of welded joints and adhesion of paints. Indigenization of the expensive lock-in-amplifier and automation has been the significant achievement in the course of this dissertation. We are on our way to prove the noise rejection capabilities of our PC LIA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fibre optic sensor for the in situ measurement of the rate of deposition of thin films has been developed. Evanescent wave in the uncladded portion of a multimode fibre is utilised for this sensor development. In the present paper we demonstrate how this sensor is useful for the monitoring of the deposition rate of polypyrrole thin films, deposited by an AC plasma polymerisation method. This technique is simple, accurate and highly sensitive compared with existing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report unusual spectral narrowing and laser emission from polymer thin films doped with Coumarin 540 dye. The laser emission from the polymer films is found to be highly dependent upon the excitation length of the medium. Even a short length of 1.75 mm of the dye doped film gave rise to laser emission with FWHM of 0.3 nm for a pump intensity of 825 kW cm−2. The partial reflections from the broad lateral surfaces of the free standing films provided the optical feedback for the laser emission. Occurrence of well-resolved equally spaced resonant modes confirmed the effect of a Fabry–Perot-like optical cavity between the film surfaces.