965 resultados para temperature sensitive
Resumo:
The perovskites, Y0.75La0.25Ba2Cu3O7 and Y0.75Lu0.25Ba2Cu3O7, show high-Tc superconductivity (with zero resistance at or above 80 K), just as the parent compound YBa2Cu3O7. The Lu-substituted oxide, with the smallest unit-cell parameters, shows the highest Tc besides exhibiting a 100% Meissner effect. Hc1, in these oxides is around 25 mT, but the Hc2, is large. The thermopower of YBa2Cu3O7 shows a sharp transition to zero at the superconducting transition, reinforcing the bulk nature of the superconductivity. Preliminary studies show that ErBa2Cu3O7 and Er0.5Y0.5Ba2Cu3O7 are both high-temperature superconductors with zero resistance in the 82-90 K range.
Resumo:
Oxygen atoms in the middle Cu---O layer of YBa2Cu3O7 consisting of strings of corner-connected (CuO4)∞ units are shown to be crucial for superconductivity. Importance of hole-hole pairing giving rise to O---O bonds is also indicated.
Resumo:
Chlorine NQR in 2,6-dichloropyridine has been investigated in the temperature range 77 K to room temperature and a single resonance line has been observed throughout. Using this data, torsional frequencies of the molecule have been evaluated on the basis of both the Bayer theory and the modified Bayer theory incorporating Tatsuzaki correction.
Resumo:
The current study was undertaken to enumerate Gram-positive bacteria in fresh sub-tropical marine fish and determine the effect of ambient storage (25°C) on the Gram-positive bacterial count. Total and Gram-positive bacteria were enumerated in the muscles, gills and gut of fresh and stored Pseudocaranx dentex, Pagrus auratus and Mugil cephalus on tryptone soya agar (TSA) and TSA with 0.25% phenylethyl alcohol (PEA), respectively. Initial studies indicated that PEA significantly reduced total aerobic bacterial count (TABC) whereas control Gram-positive bacteria were not affected by 0.25% PEA. TABC significantly increased in all fish body parts, whereas Gram-positive aerobic bacterial count (GABC) significantly increased only in the muscles and gills during ambient storage for 15 h. The TABC of the fish species increased from 4.00, 6.13 and 4.58 log cfu g-1, respectively in the muscles, gills, and gut to 6.31, 7.31 and 7.23 log cfu g-1 by the end of storage. GABC increased from 2.00, 3.52 and 2.20 log cfu g-1 to 4.70, 5.85 and 3.36 log cfu g-1. Within each species, TABC were significantly higher in the gills compared to that of muscles and gut; however, no significant differences were found in GABC between muscles and gills. This study demonstrated the potential importance of Gram-positive bacteria in sub-tropical marine fish and their spoilage.
Resumo:
A new method is suggested where the thermal activation energy is measured directly and not as a slope of an Arrhenius plot. The sample temperature T is allowed to fluctuate about a temperature T0. The reverse-biased sample diode is repeatedly pulsed towards zero bias and the transient capacitance C1 at time t1 is measured The activation energy is obtained by monitoring the fluctuations in C1 and T. The method has been used to measure the activation energy of the gold acceptor level in silicon.
Resumo:
This study uses chlorophyll a fluorescence to examine the effect of environmentally relevant (1-4 h) exposures of thermal stress (35-45 [deg]C) on seagrass photosynthetic yield in seven tropical species of seagrasses. Acute response of each tropical seagrass species to thermal stress was characterised, and the capacity of each species to tolerate and recover from thermal stress was assessed. Two fundamental characteristics of heat stress were observed. The first effect was a decrease in photosynthetic yield (Fv / Fm) characterised by reductions in F and Fm'. The dramatic decline in Fv / Fm ratio, due to chronic inhibition of photosynthesis, indicates an intolerance of Halophila ovalis, Zostera capricorni and Syringodium isoetifolium to ecologically relevant exposures of thermal stress and structural alterations to the PhotoSystem II (PSII) reaction centres. The decline in Fm' represents heat-induced photoinhibition related to closure of PSII reaction centres and chloroplast dysfunction. The key finding was that Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were more tolerant to thermal stress than H. ovalis, Z. capricorni and S. isoetifolium. After 3 days of 4 h temperature treatments ranging from 25 to 40 [deg]C, C. rotundata, C. serrulata and H. uninervis demonstrated a wide tolerance to temperature with no detrimental effect on Fv / Fm' qN or qP responses. These three species are restricted to subtropical and tropical waters and their tolerance to seawater temperatures up to 40 [deg]C is likely to be an adaptive response to high temperatures commonly occurring at low tides and peak solar irradiance. The results of temperature experiments suggest that the photosynthetic condition of all seagrass species tested are likely to suffer irreparable effects from short-term or episodic changes in seawater temperatures as high as 40-45 [deg]C. Acute stress responses of seagrasses to elevated seawater temperatures are consistent with observed reductions in above-ground biomass during a recent El Nino event.
Resumo:
Prediction of the initiation, appearance and emergence of leaves is critically important to the success of simulation models of crop canopy development and some aspects of crop ontogeny. Data on leaf number and crop ontogeny were collected on five cultivars of maize differing widely in maturity and genetic background grown under natural and extended photoperiods, and planted on seven sowing dates from October 1993 to March 1994 at Gatton, South-east Queensland. The same temperature coefficients were established for crop ontogeny before silking, and the rates of leaf initiation, leaf tip appearance and full leaf expansion, the base, optimum and maximum temperatures for each being 8, 34 and 40 degrees C. After silking, the base temperature for ontogeny was 0 degrees C, but the optimum and maximum temperatures remained unchanged. The rates of leaf initiation, appearance of leaf tips and full leaf expansion varied in a relatively narrow range across sowing times and photoperiod treatments, with average values of 0.040 leaves (degrees Cd)-1, 0.021 leaves (degrees Cd)-1, and 0.019 leaves (degrees Cd)-1, respectively. The relationships developed in this study provided satisfactory predictions of leaf number and crop ontogeny (tassel initiation to silking, emergence to silking and silking to physiological maturity) when assessed using independent data from Gatton (South eastern Queensland), Katherine and Douglas Daly (Northern Territory), Walkamin (North Queensland) and Kununurra (Western Australia).
Resumo:
This article explains the essence of the context-sensitive parameters and dimensions in play at the time of an intervention, through the application of Rog’s (2012) model of contextual parameters. Rog’s model offers evaluators a structured approach to examine an intervention. The initial study provided a systematic way to clarify the scope, variables, timing, and appropriate evaluation methodology to evaluate the implementation of a government policy. Given that the government implementation of an educational intervention under study did not follow the experimental research approach, nor the double cycle of action research approach, the application of Rog’s model provided an in-depth understanding of the context-sensitive environment; it is from this clear purpose that the broader evaluation was conducted. Overall, when governments or institutions implement policy to invoke educational change (and this intervention is not guided by an appropriate evaluation approach), then program evaluation is achievable post-implementation. In this situation, Rog’s (2012) model of contextual parameters is a useful way to achieve clarity of purpose to guide the program evaluation.
Resumo:
A 35Cl NQR study of 2-chloro-3-pyridinol showed the presence of four NQR signals at 77 K. One of the lines showed a positive temperature coefficient of the NQR frequency. 1H NMR studies showed the presence of intramolecular hydrogen bonding, and the anomalous NQR temperature dependence has been explained in terms of Bayer and hydrogen bond effects. The room temperature x-ray structure and the low-temperature NQR data suggest the presence of a phase transition.
Resumo:
Electrical resistivity of bulk amorphous Al23T77 samples has been studied as a function of pressure (up to 80 kbar) and temperature (down to 77 K). At atmospheric pressure the temperature dependence of resistivity obeys the relation = π0 exp(δE/RT) with two activation energies. In the temperature range 300 K T > 234 K the activation energy is 0.58 eV and for 234 >T 185 K the value is δE = 0.30 ev. The activation energy has been measured as a function of pressure. The electrical resistivity decreases exponentially with the increase of pressure and at 70 kbar pressure the electrical behaviour of the sample shows a metallic nature with a positive temperature coefficient. The high pressure phase of the sample is found to be a crystalline hexagonal phase.
Resumo:
The thermodynamic activities of MgO in the NaCl-type solid solutions which can exist in xMgO + (1 x)MnO have been determined in the temperature range 1163 to 1318 K from a solid-state galvanic cell incorporating MgF2 as the solid electrolyte. The activities of MnO have been calculated by a graphical Gibbs-Duhem integration method. The activities of both the components exhibit positive deviations from ideality over the entire composition range. The excess molar enthalpies are found to be positive. Further, xMgO + (1 - x)MnO does not conform to regular-solution behaviour. The origin of the excess thermodynamic properties is discussed in relation to the cationic size disparity and the crystal-field effects.
Resumo:
A graphical method is presented for Hall data analysis, including the temperature variation of activation energy due to screening. This method removes the discrepancies noted in the analysis of recently reported Hall data on Si(In).
Resumo:
Regional metamorphic belts provide important constraints on the plate tectonic architecture of orogens. We report here a detailed petrologic examination of the sapphirine-bearing ultra-high temperature (UHT) granulites from the Jining Complex within the Khondalite Belt of the North China Craton (NCC). These granulites carry diagnostic UHT assemblages and their microstructures provide robust evidence to trace the prograde, peak and retrograde metamorphic evolution. The P–T conditions of the granulites estimated from XMgGrt(Mg/Fe + Mg) − XMgSpr isopleth calculations indicate temperature above 970 °C and pressures close to 7 kbar. We present phase diagrams based on thermodynamic computations to evaluate the mineral assemblages and microstructures and trace the metamorphic trajectory of the rocks. The evolution from Spl–Qtz–Ilm–Crd–Grt–Sil to Spr–Qtz–Crd–Opx–Ilm marks the prograde stage. The Spl–Qtz assemblage appears on the low-pressure side of the P–T space with Spr–Qtz stable at the high-pressure side, possibly representing an increase in pressure corresponding to compression. The spectacular development of sapphirine rims around spinel enclosed in quartz supports this inference. An evaluation of the key UHT assemblages based on model proportion calculation suggests a counterclockwise P–T path. With few exceptions, granulite-facies rocks developed along collisional metamorphic zones have generally been characterized by clockwise exhumation trajectories. Recent evaluation of the P–T paths of metamorphic rocks developed within collisional orogens indicates that in many cases the exhumation trajectories follow the model subduction geotherm, in accordance with a tectonic model in which the metamorphic rocks are subducted and exhumed along a plate boundary. The timing of UHT metamorphism in the NCC (c. 1.92 Ga) coincides with the assembly of the NCC within the Paleoproterozoic Columbia supercontinent, a process that would have involved subduction of passive margins sediments and closure of the intervening ocean. Thus, the counterclockwise P–T path obtained in this study correlates well with a tectonic model involving subduction and final collisional suturing, with the UHT granulites representing the core of the hot or ultra-hot orogen developed during Columbia amalgamation.
Resumo:
Previous research on P leaf analysis for detecting deficiencies in cotton (Gossypium hirsutum L.) has not considered temperature as a determining factor. This is despite correlations between leaf P content and temperature being observed in other crops. As part of research into a new cotton farming system for the semi-arid tropics of Australia, we conducted two P fertiliser rate experiments on recently cleared un-cropped (bicarbonate P < 5 mg kg- 1) and previously cropped (bicarbonate P 26 mg kg- 1) soil. They aimed to develop P requirements and more importantly to determine if temperature affects the leaf P concentrations used to diagnose P deficiencies. In 2002, optimal yield on un-cropped, low P soil was achieved with a 60 kg P ha- 1 rate. In 2003, residual P from the 40 kg P ha- 1 treatment produced optimal yield. On cropped, high P soil there was no yield response to treatments up to 100 kg P ha- 1. On low P soil, a positive correlation was observed between P concentration in the youngest fully-unfurled leaf (YFUL), fertiliser rate, and mean diurnal temperature in the seven days prior to sampling. On high P soil, a positive correlation was observed between the YFUL and mean diurnal temperature however there was no correlation with fertiliser rate. These results show that YFUL analysis can be used to diagnose P deficiencies in cotton, provided the temperature prior to sampling is considered.
Resumo:
In this work, effects of pressure sensitive yielding and plastic dilatancy on void growth and void interaction mechanisms in fracture specimens displaying high and low constraint levels are investigated. To this end, large deformation finite element simulations are carried out with discrete voids ahead of the notch. It is observed that multiple void interaction mechanism which is favored by high initial porosity is further accelerated by pressure sensitive yielding, but is retarded by loss of constraint. The resistance curves predicted based on a simple void coalescence criterion show enhancement in fracture resistance when constraint level is low and when pressure sensitivity is suppressed.