877 resultados para system selection and implementation
Resumo:
In this thesis the application of biotechnological processes based on microbial metabolic degradation of halogenated compound has been investigated. Several studies showed that most of these pollutants can be biodegraded by single bacterial strains or mixed microbial population via aerobic direct metabolism or cometabolism using as a growth substrates aromatic or aliphatic hydrocarbons. The enhancement of two specific processes has been here object of study in relation with its own respective scenario described as follow: 1st) the bioremediation via aerobic cometabolism of soil contaminated by a high chlorinated compound using a mixed microbial population and the selection and isolation of consortium specific for the compound. 2nd) the implementation of a treatment technology based on direct metabolism of two pure strains at the exact point source of emission, preventing dilution and contamination of large volumes of waste fluids polluted by several halogenated compound minimizing the environmental impact. In order to verify the effect of these two new biotechnological application to remove halogenated compound and purpose them as a more efficient alternative continuous and batch tests have been set up in the experimental part of this thesis. Results obtained from the continuous tests in the second scenario have been supported by microbial analysis via Fluorescence in situ Hybridisation (FISH) and by a mathematical model of the system. The results showed that both process in its own respective scenario offer an effective solutions for the biological treatment of chlorinate compound pollution.
Resumo:
Sustainable computer systems require some flexibility to adapt to environmental unpredictable changes. A solution lies in autonomous software agents which can adapt autonomously to their environments. Though autonomy allows agents to decide which behavior to adopt, a disadvantage is a lack of control, and as a side effect even untrustworthiness: we want to keep some control over such autonomous agents. How to control autonomous agents while respecting their autonomy? A solution is to regulate agents’ behavior by norms. The normative paradigm makes it possible to control autonomous agents while respecting their autonomy, limiting untrustworthiness and augmenting system compliance. It can also facilitate the design of the system, for example, by regulating the coordination among agents. However, an autonomous agent will follow norms or violate them in some conditions. What are the conditions in which a norm is binding upon an agent? While autonomy is regarded as the driving force behind the normative paradigm, cognitive agents provide a basis for modeling the bindingness of norms. In order to cope with the complexity of the modeling of cognitive agents and normative bindingness, we adopt an intentional stance. Since agents are embedded into a dynamic environment, things may not pass at the same instant. Accordingly, our cognitive model is extended to account for some temporal aspects. Special attention is given to the temporal peculiarities of the legal domain such as, among others, the time in force and the time in efficacy of provisions. Some types of normative modifications are also discussed in the framework. It is noteworthy that our temporal account of legal reasoning is integrated to our commonsense temporal account of cognition. As our intention is to build sustainable reasoning systems running unpredictable environment, we adopt a declarative representation of knowledge. A declarative representation of norms will make it easier to update their system representation, thus facilitating system maintenance; and to improve system transparency, thus easing system governance. Since agents are bounded and are embedded into unpredictable environments, and since conflicts may appear amongst mental states and norms, agent reasoning has to be defeasible, i.e. new pieces of information can invalidate formerly derivable conclusions. In this dissertation, our model is formalized into a non-monotonic logic, namely into a temporal modal defeasible logic, in order to account for the interactions between normative systems and software cognitive agents.
Resumo:
Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.
Resumo:
The Italian radio telescopes currently undergo a major upgrade period in response to the growing demand for deep radio observations, such as surveys on large sky areas or observations of vast samples of compact radio sources. The optimised employment of the Italian antennas, at first constructed mainly for VLBI activities and provided with a control system (FS – Field System) not tailored to single-dish observations, required important modifications in particular of the guiding software and data acquisition system. The production of a completely new control system called ESCS (Enhanced Single-dish Control System) for the Medicina dish started in 2007, in synergy with the software development for the forthcoming Sardinia Radio Telescope (SRT). The aim is to produce a system optimised for single-dish observations in continuum, spectrometry and polarimetry. ESCS is also planned to be installed at the Noto site. A substantial part of this thesis work consisted in designing and developing subsystems within ESCS, in order to provide this software with tools to carry out large maps, spanning from the implementation of On-The-Fly fast scans (following both conventional and innovative observing strategies) to the production of single-dish standard output files and the realisation of tools for the quick-look of the acquired data. The test period coincided with the commissioning phase for two devices temporarily installed – while waiting for the SRT to be completed – on the Medicina antenna: a 18-26 GHz 7-feed receiver and the 14-channel analogue backend developed for its use. It is worth stressing that it is the only K-band multi-feed receiver at present available worldwide. The commissioning of the overall hardware/software system constituted a considerable section of the thesis work. Tests were led in order to verify the system stability and its capabilities, down to sensitivity levels which had never been reached in Medicina using the previous observing techniques and hardware devices. The aim was also to assess the scientific potential of the multi-feed receiver for the production of wide maps, exploiting its temporary availability on a mid-sized antenna. Dishes like the 32-m antennas at Medicina and Noto, in fact, offer the best conditions for large-area surveys, especially at high frequencies, as they provide a suited compromise between sufficiently large beam sizes to cover quickly large areas of the sky (typical of small-sized telescopes) and sensitivity (typical of large-sized telescopes). The KNoWS (K-band Northern Wide Survey) project is aimed at the realisation of a full-northern-sky survey at 21 GHz; its pilot observations, performed using the new ESCS tools and a peculiar observing strategy, constituted an ideal test-bed for ESCS itself and for the multi-feed/backend system. The KNoWS group, which I am part of, supported the commissioning activities also providing map-making and source-extraction tools, in order to complete the necessary data reduction pipeline and assess the general system scientific capabilities. The K-band observations, which were carried out in several sessions along the December 2008-March 2010 period, were accompanied by the realisation of a 5 GHz test survey during the summertime, which is not suitable for high-frequency observations. This activity was conceived in order to check the new analogue backend separately from the multi-feed receiver, and to simultaneously produce original scientific data (the 6-cm Medicina Survey, 6MS, a polar cap survey to complete PMN-GB6 and provide an all-sky coverage at 5 GHz).
Fault detection, diagnosis and active fault tolerant control for a satellite attitude control system
Resumo:
Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) have gained central importance over the past decades, due to the increasing requirements of availability, cost efficiency, reliability and operating safety. This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics and kinematics are described, along with the dynamic models of the actuators and main external disturbance sources. The considered ADCS is composed of an array of four redundant reaction wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation (FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation of a novel diagnosis system is described. The system consists of a FDI module composed of properly organized model-based residual filters, exploiting the available input and output information for the detection and localization of an occurred fault. A proper fault mapping procedure and the nonlinear geometric approach are exploited to design residual filters explicitly decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function neural networks, allows to obtain accurate fault estimations. Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault accommodation and guarantee the desired control performances. A standard sliding mode controller is implemented for attitude stabilization and control. Several simulation results are given to highlight the performances of the overall designed system in case of different types of faults affecting the ADCS actuators and sensors.
Resumo:
Osteoarticular allograft is one possible treatment in wide surgical resections with large defects. Performing best osteoarticular allograft selection is of great relevance for optimal exploitation of the bone databank, good surgery outcome and patient’s recovery. Current approaches are, however, very time consuming hindering these points in practice. We present a validation study of a software able to perform automatic bone measurements used to automatically assess the distal femur sizes across a databank. 170 distal femur surfaces were reconstructed from CT data and measured manually using a size measure protocol taking into account the transepicondyler distance (A), anterior-posterior distance in medial condyle (B) and anterior-posterior distance in lateral condyle (C). Intra- and inter-observer studies were conducted and regarded as ground truth measurements. Manual and automatic measures were compared. For the automatic measurements, the correlation coefficients between observer one and automatic method, were of 0.99 for A measure and 0.96 for B and C measures. The average time needed to perform the measurements was of 16 h for both manual measurements, and of 3 min for the automatic method. Results demonstrate the high reliability and, most importantly, high repeatability of the proposed approach, and considerable speed-up on the planning.
Digital signal processing and digital system design using discrete cosine transform [student course]
Resumo:
The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.
Resumo:
Activation-induced cytidine deaminase (AID) is indispensable for immunoglobulin maturation by somatic hypermutations and class switch recombination and is supposed to deaminate cytidines in DNA, while its homolog APOBEC-1 edits apolipoprotein (apo) B mRNA by cytidine deamination. We studied the editing activity of APOBEC-1 and AID in yeast using the selectable marker Gal4 linked to its specific inhibitor protein Gal80 via an apo B cassette (Gal4-C) or via the variable region of a mouse immunoglobulin heavy chain gene (Gal4-VH). Expression of APOBEC-1 induced C to U editing in up to 15% of the Gal4-C transcripts, while AID was inactive in this reaction even in the presence of the APOBEC-1 complementation factor. After expression of APOBEC-1 as well as AID approximately 10(-3) of yeast cells survived low stringency selection and expressed beta-galactosidase. Neither AID nor APOBEC-1 mutated the VH sequence of Gal4-VH, and consequently the yeast colonies did not escape high stringent selection. AID, however, induced frequent plasmid recombinations that were only rarely observed with APOBEC-1. In conclusion, AID cannot substitute APOBEC-1 to edit the apo B mRNA, and the expression of AID in yeast is not sufficient for the generation of point mutations in a highly transcribed Gal4-VH sequence. Cofactors for AID induced somatic hypermutations of immunoglobulin variable regions, that are present in B cells and a variety of non-B cells, appear to be missing in yeast. In contrast to APOBEC-1, AID alone does not exhibit an intrinsic specificity for its target sequences.
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
The main aim of the methodology presented in this paper is to provide a framework for a participatory process for the appraisal and selection of options to mitigate desertification and land degradation. This methodology is being developed within the EU project DESIRE (www.desire-project.eu/) in collaboration with WOCAT (www.wocat.org). It is used to select promising conservation strategies for test-implementation in each of the 16 degradation and desertification hotspot sites in the Mediterranean and around the world. The methodology consists of three main parts: In a first step, prevention and mitigation strategies already applied at the respective DESIRE study site are identified and listed during a workshop with representatives of different stakeholders groups (land users, policy makers, researchers). The participatory and process-oriented approach initiates a mutual learning process among the different stakeholders by sharing knowledge and jointly reflecting on current problems and solutions related to land degradation and desertification. In the second step these identified, locally applied solutions (technologies and approaches) are assessed with the help of the WOCAT methodology. Comprehensive questionnaires and a database system have been developed to document and evaluate all relevant aspects of technical measures as well as implementation approaches by teams of researchers and specialists, together with land users. This research process ensures systematic assessing and piecing together of local information, together with specific details about the environmental and socio-economic setting. The third part consists of another stakeholder workshop where promising strategies for sustainable land management in the given context are selected, based on the best practices database of WOCAT, including the evaluated locally applied strategies at the DESIRE sites. These promising strategies will be assessed with the help of a selection and decision support tool and adapted for test-implementation at the study site.
Resumo:
Changes of porosity, permeability, and tortuosity due to physical and geochemical processes are of vital importance for a variety of hydrogeological systems, including passive treatment facilities for contaminated groundwater, engineered barrier systems (EBS), and host rocks for high-level nuclear waste (HLW) repositories. Due to the nonlinear nature and chemical complexity of the problem, in most cases, it is impossible to verify reactive transport codes analytically, and code intercomparisons are the most suitable method to assess code capabilities and model performance. This paper summarizes model intercomparisons for six hypothetical scenarios with generally increasing geochemical or physical complexity using the reactive transport codes CrunchFlow, HP1, MIN3P, PFlotran, and TOUGHREACT. Benchmark problems include the enhancement of porosity and permeability through mineral dissolution, as well as near complete clogging due to localized mineral precipitation, leading to reduction of permeability and tortuosity. Processes considered in the benchmark simulations are advective-dispersive transport in saturated media, kinetically controlled mineral dissolution-precipitation, and aqueous complexation. Porosity changes are induced by mineral dissolution-precipitation reactions, and the Carman-Kozeny relationship is used to describe changes in permeability as a function of porosity. Archie’s law is used to update the tortuosity and the pore diffusion coefficient as a function of porosity. Results demonstrate that, generally, good agreement is reached amongst the computer models despite significant differences in model formulations. Some differences are observed, in particular for the more complex scenarios involving clogging; however, these differences do not affect the interpretation of system behavior and evolution.
Continental-Scale Footprint of Balancing and Positive Selection in a Small Rodent (Microtus arvalis)
Resumo:
Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here we address this problem by studying genomic diversity in the European common vole (Microtus arvalis) presenting high levels of differentiation between populations (average FST = 0.31). We studied 3,839 Amplified Fragment Length Polymorphism (AFLP) markers genotyped in 444 individuals from 21 populations distributed across the European continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker system, and therefore has increased power to detect selection. The high number of screened populations allowed us to detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses identified four-times more markers (138) being under positive selection, and geographical patterns suggest that some of these markers are probably associated with alpine regions, which seem to have environmental conditions that favour adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this evolutionary force seems to play a relatively minor role in shaping the genomic diversity of the common vole, which is more influenced by positive selection and neutral processes like drift and demographic history.
Resumo:
Background: A prerequisite for high performance in motor tasks is the acquisition of egocentric sensory information that must be translated into motor actions. A phenomenon that supports this process is the Quiet Eye (QE) defined as long final fixation before movement initiation. It is assumed that the QE facilitates information processing, particularly regarding movement parameterization. Aims: The question remains whether this facilitation also holds for the information-processing stage of response selection and – related to perception crucial – stage of stimulus identification. Method: In two experiments with sport science students, performance-enhancing effects of experimentally manipulated QE durations were tested as a function of target position predictability and target visibility, thereby selectively manipulating response selection and stimulus identification demands, respectively. Results: The results support the hypothesis of facilitated information processing through long QE durations since in both experiments performance-enhancing effects of long QE durations were found under increased processing demands only. In Experiment 1, QE duration affected performance only if the target position was not predictable and positional information had to be processed over the QE period. In Experiment 2, in a full vs. no target visibility comparison with saccades to the upcoming target position induced by flicker cues, the functionality of a long QE duration depended on the visual stimulus identification period as soon as the interval falls below a certain threshold. Conclusions: The results corroborate earlier findings that QE efficiency depends on demands put on the visuomotor system, thereby furthering the assumption that the phenomenon supports the processes of sensorimotor integration.
Resumo:
Objective. In 2003, the State of Texas instituted the Driver Responsibility Program (TDRP), a program consisting of a driving infraction point system coupled with a series of graded fines and annual surcharges for specific traffic violations such as driving while intoxicated (DWI). Approximately half of the revenues generated are earmarked to be disbursed to the state's trauma system to cover uncompensated trauma care costs. This study examined initial program implementation, the impact of trauma system funding, and initial impact on impaired driving knowledge, attitudes and behaviors. A model for targeted media campaigns to improve the program's deterrence effects was developed. ^ Methods. Data from two independent driver survey samples (conducted in 1999 and 2005), department of public safety records, state health department data and a state auditor's report were used to evaluate the program's initial implementation, impact and outcome with respect to drivers' impaired driving knowledge, attitudes and behavior (based on constructs of social cognitive theory) and hospital uncompensated trauma care funding. Survey results were used to develop a regression model of high risk drivers who should be targeted to improve program outcome with respect to deterring impaired driving. ^ Results. Low driver compliance with fee payment (28%) and program implementation problems were associated with lower surcharge revenues in the first two years ($59.5 million versus $525 million predicted). Program revenue distribution to trauma hospitals was associated with a 16% increase in designated trauma centers. Survey data demonstrated that only 28% of drivers are aware of the TDRP and that there has been no initial impact on impaired driving behavior. Logistical regression modeling suggested that target media campaigns highlighting the likelihood of DWI detection by law enforcement and the increased surcharges associated with the TDRP are required to deter impaired driving. ^ Conclusions. Although the TDRP raised nearly $60 million in surcharge revenue for the Texas trauma system over the first two years, this study did not find evidence of a change in impaired driving knowledge, attitudes or behaviors from 1999 to 2005. Further research is required to measure whether the program is associated with decreased alcohol-related traffic fatalities. ^
Resumo:
In the Practice Change Model, physicians act as key stakeholders, people who have both an investment in the practice and the capacity to influence how the practice performs. This leadership role is critical to the development and change of the practice. Leadership roles and effectiveness are an important factor in quality improvement in primary care practices.^ The study conducted involved a comparative case study analysis to identify leadership roles and the relationship between leadership roles and the number and type of quality improvement strategies adopted during a Practice Change Model-based intervention study. The research utilized secondary data from four primary care practices with various leadership styles. The practices are located in the San Antonio region and serve a large Hispanic population. The data was collected by two ABC Project Facilitators from each practice during a 12-month period including Key Informant Interviews (all staff members), MAP (Multi-method Assessment Process), and Practice Facilitation field notes. This data was used to evaluate leadership styles, management within the practice, and intervention tools that were implemented. The chief steps will be (1) to analyze if the leader-member relations contribute to the type of quality improvement strategy or strategies selected (2) to investigate if leader-position power contributes to the number of strategies selected and the type of strategy selected (3) and to explore whether the task structure varies across the four primary care practices.^ The research found that involving more members of the clinic staff in decision-making, building bridges between organizational staff and clinical staff, and task structure are all associated with the direct influence on the number and type of quality improvement strategies implemented in primary care practice.^ Although this research only investigated leadership styles of four different practices, it will offer future guidance on how to establish the priorities and implementation of quality improvement strategies that will have the greatest impact on patient care improvement. ^